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The small gold mining Kab Amiri district ultramafic ophiolitic section (central Eastern 
Desert) comprises highly serpentinized peridotites (serpentinites) and few pyroxenites. It 
lies within a region of Neoproterozoic ophiolitic rocks and associated derivatives. The 
chromian spinel textural and chemical compositional features suggest transitional 
greenschist-amphibolite up to lower amphibolite facies metamorphism and indicates that 
they represent highly-depleted mantle residues. The presence of the Si-Ob-Si 
antisymmetric ν1(A1), symmetric ν2(A1) bands and the hydroxyl group  (OH) modes are 
conclusive for the discrimination of antigorite. Furthermore, the speculation of serpentines 
as antigorite can also be indicated from the hydroxyl group modes. The Kab Amiri ophiolite 
suite (central Eastern Desert) represents fragments of oceanic lithosphere that are 
developed in forearc setting in a supra-subduction zone (SSZ) environment. Thus the low 
TiO2 contents, the enrichment in LILE and LREE and the Nb depletion reflect the 
remelting of a highly depleted mantle source and suggest their formation in a SSZ 
environment (i.e forearc).  
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1. Introduction  
 

During the Pan-African Orogen (PAO; 550−900 Ma; 
Stern, 2004); the Arabian-Nubian Shield (ANS; 690 to 890 
Ma, Stern, 2004) was formed, comprising the 
Neoproterozoic ophiolites (870 to 690 Ma; Stern et al., 
2004) in the Eastern Desert (ED) of Egypt. Many authors 
discussed the Egyptian Neoproterozoic ophiolites (ENO) 
(e.g. Farahat et al., 2004; Stern et al., 2004; Ali-Bik at al., 
2012). Some workers considered the ENO to be generated 
in mid-ocean ridges (e.g. Zimmer et al. 1995), others 
thought that they were formed in a forearc (e.g. Stern et al. 
2004; Azer and Stern 2007; Khalil and Azer 2007) or in a 
back-arc setting (e.g. Farahat et al. 2004).  

The Kab Amiri district (KAD), central Eastern Desert 
(CED), Egypt, was long known as a small gold mining district 
since ancient times (Andráš and Kharbish, 2014). Gold 
mining in the KAD area dates back to New ancient Egyptian 
(Pharaonic) dynastic Kingdoms (2700 to 1070 BC) (Kharbish 
and Andráš 2014a, b). Recently, the KAD area (especially 
the Kab Amiri granite pluton) is considered as one of the 
most important U mineralization zones in the CED (Gaafar 
and Aboelkhair, 2014).  
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Despite the work that has been done on the different 
rock units in the KAD, no or rare (to best of my knowledge) 
detailed studies on the Neoproterozoic ophiolitic rocks in the 
KAD area, were performed. Thence, the present work aims 
to establish the primary petrography, bulk-rock and mineral 
chemistry of Neoproterozoic ophiolitic rocks in the KAD area. 
This study uncovered a good model for the sophisticated 
geologic processes experienced by the Egyptian 
Neoproterozoic ophiolitic rocks, notwithstanding the tricky 
task of eliciting information from these complex rocks. The 
serpentine and the spinal minerals were investigated in 
detail by using the μ-Raman spectroscopic technique. The 
Raman spectroscopy provides information on structure and 
composition of many mineralogical groups (e.g. Kharbish 
2017) and gives an accurate, obvious identification of major 
rock-forming minerals (e.g., silicates; Wang et al., 1999), 
accessory minerals (e.g., phosphates, oxides, and sulfides; 
Kharbish 2012; Kharbish et al. 2014, Kuebler et al. 2002), 
and secondary minerals produced by weathering and / or 
hydrothermal soultions (e.g., sulfates, carbonates, sulfosalts 
and phyllosilicate clay minerals; Wang et al., 2002; Kuebler 
et al. 2001; Kharbish et al. 2007, 2009, Kharbish and 
Andráš, 2014c; Kharbish and Jeleň, 2016; Kharbish 2007, 
2011, 2016). It can also distinguish OH and bound and 
unbound forms of H2O (Wang et al. 2001).  
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2. Geology and petrography  
The KAD area is ~ 45 km far from Port Quseir in the 

CED of Egypt and lies within a region (from oldest to 
youngest, Fig. 1) of Neoproterozoic ophiolitic rocks and 
associated derivatives that are emplaced in island arc, 
calc-alkaline volcano-sedimentary associations (Fig. 2a) 
and metagabbro-diorite assemblages (older gabbros), 
which together with the ophiolitic suites were later intruded 
by older granitoids and younger granites (Moghazi, 2002). 
The KAD is dissected by several major faults (Fig. 1), 
which extend predominantly in NW direction, with a smaller 
number of faults trending in the NE and E-W directions 
(Moghazi, 2002; Gaafar and Aboelkhair, 2014). The area 
has suffered multiple deformation and metamorphism 
caused by complex tectonic movements during the PAO, 
where the rocks were deformed and metamorphosed in the 
greenschist and amphibolite facies (Moghazi, 2002).  

The KAD Neoproterozoic ultramafic ophiolitic rocks form 
an elongated ridge, striking roughly E–W (ENE–WSW) with 
an average width of about 400 m and extend ~ 8 km 
eastward as a discontinuous chain (Fig. 1). The extensively 
serpentinized peridotites (henceforward serpentinites) 
occupy a large area and are highly deformed and sheared. 

The KAD serpentinites (highly serpentinized peridotites) 
display a massive fine- to medium-grained appearance and 
grayish to greenish colors.  

 
 

Petrographically, serpentinites compose basically of 
fine- to medium-grained platy shreds and fibrous flakes 
antigorite, together with primary chromian spinel and few 
amounts of secondary metamorphic minerals talc and 
chlorite. The rocks commonly preserve pseudomorphic 
textures of serpentine after orthopyroxene (bastite texture) 
that testify their harzburgite parentage. Subhedral shape 
spinel crystals (altered along fractures and grain boundaries) 
exhibit three irregular optical zoning owing to their alteration 
processes. The primary chromian spinel (dark gray color 
under Scan Electron Microscope, SEM) are rimmed or 
mantled by the intermediate gray zone corresponds to 
ferrian chromite and the outermost light gray rim of Cr-
magnetite (Figs. 2b, c). Rarely chlorite grains occur as small 
aggregates in a serpentine matrix or as aureoles around 
altered chromian spinel as well as coating the bastite 
textures, indicating the chlorite formation by serpentinization.  

Pockets or small elongated massive remnants are 
recorded within the serpentinites that consist mainly of 
pyroxenites (Fig. 2d). The pyroxenites are predominantly 
composed of clinopyroxene (diopside + rare augit) and 
orthopyroxene (enstatite), with antigorite and subordinate 
amounts of metamorphic minerals (viz., tremolite, talc and 
chlorite). 

 
 

 

Fig. 1. Geological map of Kab Amiri district, central Eastern Desert, Egypt (modified after Gaafar and Aboelkhair, 2014). 
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Fig. 2. (a) Contact between the serpentinites and the underlying volcano-sedimentary rocks, (b) pyroxenites in serpentinites, 
(c) and (d) BE-SEM images illustrating typical zoning patterns of the primary chromian spinel and the metamorphic ferrian 

chromite and of Cr-magnetite. 
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3. Samples and experiments 

Minerals compositions were obtained by the Cameca 
microbeam electron microprobe analyzer (EMPA; Cameca 
SX 100), with 15 Kv accelerating voltage, 20 nA beam 
current, 1 μm beam diameter and a counting time of 10s. 
The data were corrected using the ZAF software and 
calibrated by natural and synthetic reference materials: 
adularia (Si, Al, K), chromite (Cr, Fe), periclase (Mg), 
rhodonite (Mn), wollastonite (Ca), pentlandite (Ni), jadeite 
(Na) and rutile (Ti). 

Representative 20 samples (10 serpentinites and 10 
pyroxenites) from the KAD area have been analyzed for 
their major, trace and rare-earth elements (REE) 
compositions. Bulk rock major and trace elements analyses 
were performed by the X-ray spectrometer Phillips PW 
2400. Analytical precision was better than 1% and 3% for 
major and trace elements, respectively. The inductively 
coupled plasma-mass spectrometer (ICP-MS) Elan 6100 
with Hg Flow Injection System "FIMS 100" and Laser 
Sampler "LSX 200" were used for the REE analyses. 

 
 

 
 

Fig. 3. (a) Ol–Cpx–Opx classification diagram (Streckeisen, 1976), (b) relationship between Al2O3 wt.% and SiO2 /MgO of 
the studied rocks (MORB, ophiolitic gabbros and ophiolitic peridotites fields after Bodinier and Godard, 2003), (c) primitive 
mantle-normalized trace element patterns and (d) Chondrite-normalized REE patterns for the investigated rocks 
(Normalizing values after McDonough and Sun 1995; Compositional ranges for ancient and modern forearc peridotites 
after Pearce et al., 2000 and Song et al. 2009). 
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The non-polarized μ-Raman spectra were recorded in 
the spectral range from 10 to 1200 cm-1 for serpentine and 
spinel minerals and from 3000 to 4000 cm-1 for serpentine 
minerals by using a Horiba JobinYvon RPA–HE 532 
LabRAM-HR. The 632.81 nm H-Ne laser (the laser power 
was attenuated to 10%) with > 500 : 1 polarization extinction 
was focused with a 100×/0.80 objective on the sample 
surface. To enhance the OH stretching signal of the H2O 
molecules in the high wavenumber region (3000 to 4000 cm-

1), the 473.10 nm doubled Nd:YAG diode laser was used. To 
avoid heating effects, the laser was additionally slightly 
defocused. The 180° backscattering geometry was analyzed 
with a 1200 lines/mm grating monochromator data collection 
mode.  

The minimum system resolution and the wavenumber 
accuracy were about 3 cm-1 and ± 1 cm-1, respectively (both 
calibrated with the Rayleigh line and the 520.6 cm-1 Raman 
peak of a silica standard). Data acquisition, instrument 
control, baseline correction and background subtraction 
were performed with LabSpec 5 software (Horiba Jobin-
Yvon). Based on the signal intensity, five acquisitions with 
20–30 s per ‘spectral window’ were measured. The single 
bands peak centers were determined using the combined 
Gaussian/lorentzian functions by PeakFit 4.12 software 
(Jandel Scientific Chicago, IL, USA). 

 
4. Results 
4.1. Geochemistry 

The MgO contents and LOI are much higher in 
serpentinites compared with those in pyroxenites; whereas 
the higher values of CaO content occur in pyroxenites (Table 
1 online). The serpentinites plot in within the harzburgite field 
(Fig. 3a) comparable to those of the CED and the ANS 
ophiolites (Azer and Stern, 2007; Stern et al., 2004; Zimmer 
et al., 1995), whereas the pyroxenites lie within the olivine 
websterite field (Fig. 3a). Similar to other CED serpentinites 
(Azer and Stern, 2007; Zimmer et al., 1995), KAD 
serpentinites and pyroxenites are closely associated or 
connected with the ophiolitic peridotite (Fig. 3b). 
Furthermore, the low and restricted range of the serpentinites 
CaO contents (0.59 - 0.82 wt%, Table 1 online) suggest that 
Ca metasomatism, which is a common feature in the Egyptian 
serpentinites (Stern and Gwinn, 1990), was limited.  

Both serpentinites and pyroxenites show depleted to 
highly depleted trace elements patterns relative to the 
primitive mantle (Fig. 3c) and LREE-enriched patterns (Fig. 
3d). The great likeness among the trace element and REE 
patterns of the examined rocks indicate the genetic 
connection of serpentinites and pyroxenites. 

 
4.2. Mineral chemistry 
4.2.1. Spinel group minerals 

In agreement with optical observations (Fig. 2b, c), the 
investigated spinels in serpentinites are characterized by 
possessing three distinct mineral–chemical zones (i.e. 
chromian spinels, ferrian chromite and Cr-magnetite; Fig. 
4a) that mark the sporadic modification from magmatic 
chromian spinels to altered metamorphic rims. 

Magmatic chromian spinel in serpentinites is chemically 
characterized by Fe2+-rich chromian spinel where 
Cr/Fe2+>1; Fe2+# [= Fe2+/(Fe2+ + Mg)] 0.40 - 0.57, Cr# [= 
Cr/(Cr + Al)] 0.66 to 0.97 (Table 2 online). The Cr2O3 
(48.88 - 57.58 wt%) is negatively correlated with Al2O3 

(9.84 to 17.02 wt%). Mg# [= Mg/(Mg+Fe2+)] ranges from 
0.44 to 0.60 and Fe3+# [= Fe3+/ (Fe3++Cr+Al)] is < 0.10 
(Table 2 online). This composition is interpreted to be 
characteristic for primary mantle chromian spinels (Arai et 
al. 2006) with no or very little post-compositional change. 

It is widely accepted that primary magmatic chromian 
spinel alters to ferrian chromite (formerly called 
ferritchromite) during serpentinization, greenschist to mid-
amphibolite facies metamorphism and/or hydrothermal 
events (e.g., Frost 1991; Mukherjee et al. 2010; Kharbish 
2013). The altered spinel rims of metamorphic origin, 
including ferrian chromite and Cr-magnetite plot along the 
join of the metamorphic magnetite in the Cr–Al–Fe3+ 
triangular diagram (i.e. Cr–Fe3+ join according to Barnes 
and Roeder, 2001; Fig. 4a).  

The composition of the ferrian chromite alteration 
product [(Fe2+,Fe3+,Mg) (Cr,Fe3+,Fe2+,Al)2O4] is 
characterized by high Fe3+ contents (0.91 – 1.36 apfu), 
high Cr# (0.94-0.99; due to the loss of Al2O3) and low 
Mg/Fe2+ (Table 3 online).  

The Cr-magnetites (Cr/Fe2+<1; Table 4 online) display a 
chemical composition, similar to that described in the 
ferrian chromite in terms of Fe2O3, Cr2O3 and Al2O3, 
however, they show an enrichment in Fe2O3 contents 
(57.21 – 67.46 wt%) and low in MgO contents, due to the 
extensive Mg-Fe2+ exchange (Table 4 online). This 
composition is identified as a Cr-magnetite (lie along the 
metamorphic magnetite Cr–Fe3+ join, Fig. 4a) rather than 
primary magnetite or chromian spinel (plots along the Al–
Fe3+ join, Fig. 4a). 

  
4.2.2. Clinopyroxene and serpentines 

Clinopyroxenes in KAD pyroxenites (Fig. 4b, Table 5 
online) are mainly diopsitic and rarely augitic in 
composition (≈En47-50,Wo44-48,Fs3-7; Morimoto, 1988) with 
high Al2O3 (0.63– 2.55 wt.%) and Cr2O3 (0.16 - 0.70 wt.%) 
contents, confirming their primary origin (according to 
Nozaka, 2010).  

Serpentines are highly magnesian, with Mg# ranging 
from 0.86 to 0.93 (Table 6 online). The analyzed serpentine 
contains a restricted compositional variation in SiO2 (43.32 
to 45.46 wt.%) and low Al2O3 (0.21–0.82 wt%), and Cr2O3 
(0.02–0.75 wt% presumably introduced from Cr-spinel 
during serpentinization).  

 
4.2.3. Chlorite 

Based on the classification of Wiewióra (1990) for chlorites, 
all the investigated chlorites belong to the trioctahedral group 
(Σ octahedral cations ≈ 12 apfu, Table 7 online). Chlorite 
chemistry contains low Si contents (Table 7 online) and Fe/(Fe 
+ Mg) ratios and reflecting a homogeneous clinochlore 
composition (Fig. 4c) (Hey, 1954; Zang and Fyfe, 1995). The 
[Al/(Al+Fe+Mg)]-[Mg/(Mg+Fe)] diagram of Laird (1988) 
indicate that the investigated chlorites are formed under similar 
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conditions or under the same specific environmental 
conditions (Fig. 4d). Thus, the investigated chlorites are 
suitable for metamorphic conditions identification during late 
stages of the metamorphic evolution. The chlorite formation 
temperature thermometers based on the temperature 
dependent variation of AlIV site occupancy of Cathelineau and 

Nieva (1985); Xie et al., (1997) and Bourdelle and 
Cathelineau (2015, Fig. 4e) are, therefore applied. The results 
reflect that chloritization occurred in all samples around 150– 
350 °C based on the AlIV temperatures and at an average 
(275 ± 10°C) (Fig. 4e, Table 7 online). 

 

 
Fig. 4. (a) Composition of investigated spinel cores and rims (stability limits after Sack and Ghiorso, 1991), (b) Plot of the 
analyzed pyroxenes on En–Wo–Fs diagram (Morimoto, 1988), (c) chlorite classification diagram according to Hey (1954) 
and Zang and Fyfe (1995), (d) chlorite diagram of Laird (1988) showing the chemical composition of chlorites in various 
geological environments and (e) plot of chlorites on R2+ –Si diagram of Bourdelle and Cathelineau (2015).  
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5. Discussion 
5.1. Raman spectroscopy. 
5.1.1. Serpentine group minerals 
The principal minerals of the serpentine group, chrysotile, 
antigorite and lizardite, have a very similar chemical 
composition, but significantly different crystal structures. 
Therefore, the Raman spectroscopic technique was used to 
differentiate among serpentine phases. Antigorite 
crystallizes in the monoclinic space group C2/m (C2h) with 
two formula units in its unit cell (Z = 2). According to Loh 
(1973), the spectra of serpentine minerals arose from the 
molecular vibrations of the distorted MgO6 octahedra (S6 
symmetry), the distorted SiO4 tetrahedra (C3v symmetry) and 
the stretching and bending modes of hydroxyl group. An 
isolated ideal Td symmetry tetrahedral SiO4 group is 
expected to show only four Raman-active normal modes of 
vibration [i.e. ν1(A1) + ν2(E) + ν3(F2) + ν4(F2), Nakamoto, 
1997]. However, due to of intermolecular interactions, the 
symmetry of the SiO4 molecule is generally lower in the 
crystal and thence, the SiO4 vibrations in the crystal are 
controlled by a new selection rule (e.g. Kharbish 2012).  

The symmetry of the SiO4 tetrahedron in antigorite is 
lowered from Td to C3v site symmetry and, as a result, the 

four A1 + E + 2F2 species will be translated into ν1(A1) + 
ν2(A1) + ν3(A1) + ν4(E) + ν5(E) + ν6(E) modes. 
Comparing the band positions and numbers of the 
investigated samples with those in the antigorite given by 
Rinaudo et al. (2003), Groppo et al. (2006) and Petriglieri et 
al. (2015), show a great similarity in both position and 
number (Table 1). Therefore the band assignments are 
based on the observations of the former authors (Fig. 5, 
Table 1). The bands occurring at 1046 and 685 cm–1 were 
assigned to Si-Ob-Si antisymmetric ν1(A1) and symmetric 
ν2(A1) stretching vibrations, respectively (Fig. 5, Table 1). 
The Si-O bending modes occur at 452 cm-1 ν3(A1), 375 cm-1 
ν5(E) and 474 cm–1 ν6(E). The weak band at 642 cm–1 is 
assigned to the antisymmetric OH–Mg–OH translation 
modes (Fig. 5, Table 1). The 201 cm–1 band was ascribed to 
Mg(O,OH)6 group vibrations and the shoulder and band at 
699 and 720 cm-1, respectively were assigned to an outer 
Mg-OH symmetric translation mode (Fig. 5, Table 1). The 
libration modes of inner Mg-OH occur at 609 and 662 cm-1 
(Fig. 5, Table 1). The bands at 295 and 236 cm–1 are 
assigned to v1 (A1) and v2 (B2) vibrations of the O–H–O 
groups (Fig. 5, Table 1). 
 

 
Table 2 Raman band positions (cm -1) and assignment for the spectra of proustite, smithite, trechmannite and xanthoconite 

in comparison with tennantite and lorandite [5], ellisite [10] and seligmannite, gratonite, sartorite, 
dufrénoysite and baumhauerite [2]. The minerals are sorted from left to right by increasing v1 wavenumbers. 

 

Attribution 

Antigorite 

This work 
Groppo et al. 

(2006) 
Petriglieri et 
al., (2015) 

Rinaudo et al. 
(2003) 

Hydroxyl group vibration 3693  3693  

Hydroxyl group vibration 3666  3665  

Hydroxyl group vibration 3622    

ν1(A1) Si-Ob-Si antisymmetric stretching vibrations 1046 1044 1045 1044 

Outer Mg-OH symmetric translation vibration 720    

Outer Mg-OH symmetric translation vibration 699    

ν2(A1) Si-Ob-Si symmetric stretching vibration 685 683 687 683 

Inner Mg-OH libration vibration 662    

Antisymmetric OH–Mg–OH translation vibration 642 635 - 640  635 

Inner Mg-OH libration vibration 609    

ν6(E) Si-O bending vibration 474 463   

ν3(A1) Si-O bending vibration 452    

ν5(E) Si-O bending vibration  375 375 - 379 377 375 

v1 (A1) O–H–O group vibration 295    

v2 (B2) O–H–O group vibration 236 230 229  

Mg(O,OH)6 group vibration 201 197 - 202   
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Fig. 5. Raman spectra and vibration mode positions (cm−1) of the antigorite obtained by using the PeakFit program (goodness 
of fit r2 > 0.997). 
 

The hydroxyl group vibrations of the H2O molecules play 
a definite role in the identification of the serpentine phases. 
The investigated antigorite shows a band triplet at 3665, 
3695 and 3619 cm-1, which are in good agreement with the 
hydroxyl group modes for the antigorite given by Petriglieri et 
al. (2015). 

The occurrence of the Si-Ob-Si antisymmetric ν1(A1) 
band at 1046 cm–1 and symmetric ν2(A1) mode at 685 cm–1 
have confirmed to be conclusive for the discrimination of 
antigorite from the other polymorphs (Rinaudo et al. 2003, 
Petriglieri et al. 2015). On the other hand, no characteristic 
modes for chrysotile (occur at 390 cm-1) and lizardite 
(between 380 and 388 cm-1, Groppo et al., 2006) were 
recorded. Furthermore, the speculation of serpentines as 
antigorite can also be indicated from the hydroxyl group 
modes. 

 
5.1.2. Spinel group minerals 

Spinel minerals (space group Fd-3m, Oh, Z = 2) have 
the general chemical formula AB2O4, where A (e.g. Fe2+, 
Mg2+) and B (e.g. (Cr3+, Fe3+, Al3+). Spinel-type structure is 
based on an approximately cubic close packing of a very 

compact oxygen array (anions), with cations hosted within 
tetrahedrally (T) and octahedrally coordinated (M) sites 
(D'lppolito et al., 2015). In general, A and B cations can 
reside on both T and M sites, thus giving rise to a variable 
disorder degree, which can be described using the inversion 
parameter i, defined as the fraction of the B cations at the T 
sites. At low temperature, there are two ordered 
configurations, the normal spinel structure TAMB2X4 with i = 0 
(e.g. chromian spinel) meaning that divalent cations enter 
the T site and trivalent cations the M one, and the 
completely inverse spinel structure TBM(AB)X4 with i = 1 (e.g. 
magnetite) (D'lppolito et al., 2015). 

The spinel primitive unit cell includes 14 atoms, 
therefore the number of allowable modes of spinel predicted 
from factor group analysis (FGA) is 42 (3 acoustic modes + 
39 optical modes). In terms of irreducible representations, 
these modes can be decomposed as Γ = A1g (R) + 2A2u + Eg 
(R) + 2Eu + F1g + 5F1u (IR) + 3F2g (R) + 2F2u, leading to 5 
active optical modes in Raman spectroscopy (i.e. A1g + Eg + 
3F2g). The (R) and (IR) identify Raman-active and infrared-
active vibrational modes, respectively, and the rest of the 
species are silent modes. The E and F modes are doubly 
and triply degenerate, respectively and the three acoustic 
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modes belong to the F1u species. FGA of the examined 
spinel was performed on the Bilbao Crystallographic Server 
(http://www.cryst.ehu.es/). 

The investigated spinels exhibit Raman vibrational 
modes in the spectral region 800-100 cm-1, with no 
additional bands occur in higher energy regions (Fig. 6, 
Table 2). The low wavenumber limit of the considered 
spinels spectra was chosen only by the cut-off value of the 
used Raman edge and notch filters. In the spectrum of the 
studied magmatic chromian spinel cores (Fig. 6, Table 2), 
the strongest band at 691 cm–1 corresponds to A1g mode 
(Wang et al., 2004). The medium to weak intensity bands at 
601, 555 and 197 cm–1 correspond to modes F2g (3), F2g (2) 

and F2g (1), respectively (Reddy and Frost, 2005). The weak 
mode at 475 cm-1 was assigned to th Eg species (D'lppolito 
et al., 2015).  

The Raman spectra of the ferrian chromite are also 
similar and correspond to the spectra of magmatic chromian 
spinel cores (Fig. 6, Table 2). However, the bands display 
blue shift (i.e. increase in wavenumber or in energy) and 
changes in peak intensity and shape. Furthermore, 
additional weak bands and shoulders occur around their 
major Raman peaks at 646 and 570 cm-1, beside the five 
predicted Raman active modes for the spinel structure (Fig. 
6, Table 2).  

 

 

Fig. 6. Raman spectra and vibration mode positions (cm−1) of the chromian spinel, ferrian chromite and Cr-magnetite obtained by using the 

PeakFit program (r2 > 0.998). 

 

 

 

http://www.cryst.ehu.es/
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Table 2 Raman band positions (cm -1) and assignment for the spectra of proustite, smithite, trechmannite and 
xanthoconite in comparison with tennantite and lorandite [5], ellisite [10] and seligmannite, gratonite, 
sartorite, dufrénoysite and baumhauerite [2]. The minerals are sorted from left to right by increasing v1 
wavenumbers. 

 Antigorite    SMITHITE   

    cm-1    

 A1g  F2g (3)  F2g (2) Eg F2g (1) 

 691 646 601 570 555 475 197 

 692 647 603 570 556 476 198 

 695 650 605 571 557 478 197 

 699 651 607 572 560 480 199 

 700 653 610 573 563 480 200 

 702 654 613 575 563 483 95 

 704 655 615  564 485 199 

 707 657 618  565 486 197 

 715  620  567 492 197 

 717  622  568 494 197 
 719  625  570 495 198 

        

Wang et al., (2004) 

Reddy and Frost (2005) 

D’Ippolito et al., (2015) 
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The Raman spectra of Cr-magnetite display also five 

weak to strong bands: 660 (A1g), 532 [F2g (3)], 470 [F2g (2)], 
300 (Eg), and 189 [F2g (1)] cm–1, which correspond to the 
theoretical active modes of magnetite reported in different 
studies (Table 2), but are shifted to lower frequencies. The 
shift in peak position in Cr-magnetite to lower frequencies 
relative to the reported studies is probably caused by the 
incorporation of Cr admixture into the crystal structure 
(Cr2O3, 0.94-10.78 wt% Table 4 online). 

The band at 555 cm-1 (F2g) in chromian spinel is shifted 
to 570 cm-1 (viz. higher frequencies) ferrian chromite and is 
much weaker than the corresponding band in the spectrum 
of the chromian chromite (Figs. 6, 7). According to Reddy 
and Frost (2005) this band characterizes the vibrations of 
trivalent cations including those of the Cr3+ ions at M sites. 
This observation reflects directly the higher Cr content (> 48 
wt %) in chromian spinel relative to that from that from the 
ferrian chromite (< 35 wt %). Moreover, the Eg peak position 
(475 cm-1 in chromian spinel, shifted to 495 cm-1 in ferrian 
chromite Figs, 6, 7) is a distinctive of chromian spinel 
changed to ferrian type (according to D’lppolito et al. 2015). 

 

Moreover, according to the Hooke’s law and the 
classical harmonic oscillator model (i.e. stronger bonds and 
lighter atoms result in higher stretching frequencies), the 
peak shifts is also attributed to the probable differences in 
the band positions that arise from variations in spinel 
chemistry (i.e. substitution in T and M sites) and also to the 
difference in atomic mass of Cr, Al and Fe. 

Figure 7 reflects, in addition to the above observations, 
that (1) the vibrational mode positions depend on 
increasing the proportion of Fe3+ and (2) the modes at 646 
and 570 cm-1 are restricted to chromian spinel (cores). In 
addition, the cation substitution in T and M sites causes 
local distortions in the crystal structure and hence, a 
symmetry lowering from D3d to C3v and a crystal structure 
change from Oh to Td. The lowering in the symmetry 
increases the total number of Raman active (and / or IR) 
modes in the spinel spectra (Grimes and Collett 1971). 

From the above discussion, it can be speculated that the 
change in the chemistry for the spinel core and rim samples 
obtained from interpretation of the Raman spectra agree 
with the EMP analysis and SEM results and indicate the 
systematic change in the spinel chemistry from core to rim. 
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Fig. 7. Correlation between the Raman mode positions of the chromian spinel, ferrian chromite and Cr-magnetite and Fe3+#. 

 
5.2. Magma type and tectonic setting 
 

The low Al2O3 and CaO contents (Fig 8a) of studied 
serpentinites together with the low Ti and high Cr# (Fig. 8b, 
c) and Mg# (Fig. 8d) in the chromian spinel cores confirm 
their boninitic affinity and their similarity to the ophiolitic 
forearc peridotites worldwide and in ANS (Azer and Stern, 
2007; Khalil and Azer, 2007; Stern et al., 2004). 
Furthermore, the chemistry of clinopyroxenes in pyroxenites 
reflect their strong affinity toward the intra-oceanic forearc 
boninites (Figs. 9a, b). 

The Al2O3 contents and the FeO/MgO ratio of the 
parental melt and the empirical degree of partial melting (F) 
of the investigated chromian spinels in serpentinites were 
computed using the equations of Maurel and Maurel (1982) 
and Hellebrand et al., (2001), respectively.  

 
The obtained values (Table 2 online) of the parental 

melt Al2O3 (10.31 – 12.89 wt%), FeO/MgO (0.95 – 1.84) and 
F (19 - 22) are consistent with the composition of primary 
boninites [Al2O3 = 10.60–14.40 wt%, FeO/MgO = 0.70 – 
1.40, (Wilson, 1989)] and the peridotites recovered from 
forearcs (F = 20-25; Zanetti et al., 2006).  

Furthermore, the depletion in Nb contents (Fig. 3c) are 
similar to those in the forearc peridotites (Niu, 2004; Song et 
al., 2009). The REE patterns of KAD show great similarity 
with those of modern forearc peridotites especially from the 
South Sandwich (Pearce et al., 2000) (Fig. 3d). 
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Fig. 8. (a) CaO vs. Al2O3 diagram showing the studied serpentinites compared with MOR and forearc peridotites (after Ishii et 
al., 1992), symbols as in Fig. 3a, chromian spinel composition plotted on (b) Cr# vs. TiO2 (Fields after Dick and Bullen, 1984), 
(c) Cr# vs. TiO2 diagram (fields after Dick and Bullen, 1984; Jan and Windley, 1990) and (d) Mg# vs. Cr# (after Stern et al., 
2004) showing various tectonic regime fields (after Bloomer et al., 1995; Dick and Bullen, 1984). CED field for chromites in the 
Central Eastern Desert serpentinites is from Farahat et al. (2011), symbols as in Fig. 4a 

 

5.3. Alteration and thermal history 
One of the fundamental problems related to the 

study of serpentinites is the determination of their 
metamorphic grade. 

The presence of antigorite as the only serpentine 
mineral (see Raman spectroscopy part) in serpentinites 
and the absence of newly formed olivine indicates that they 
were formed in the stability field of antigorite (250–600 °C; 
Evans 2004) or that the temperature did not exceed the 
lower amphibolite facies metamorphism range (i.e. below 
500°C). Serpentinites have been most likely formed directly 
from mantle-wedge olivine above the slab in which the 
fluids driven for the slab cause strong hydration and 
cooling of peridotites during an early stage of 
serpentinization (400−600 °C; Khedr and Arai 2010). Thus 
the antigorite formation usually occur at ~ 500°C (Moody, 
1976), while the olivine after antigorite is commonly 

composed by dehydration at > 500ºC; (Caruso and 
Chernosky, 1979), which is the minimum temperature for 
the ferrian chromite, antigorite and chlorite formation (Jan 
and Windley, 1990).  

Figure 9c shows that the chromian spinel core 
compositions are in equilibrium with Fo88 and Fo94 olivines 
(the typical range of komatiitic olivines) at temperatures 
around 1100 ̊C and 750 ̊C, respectively. These high 
equilibrium temperatures indicate that the chromian spinel 
cores are relics of the original igneous cooling stage, and 
have not been changed during subsequent metamorphism 
or alteration. Many researchers have proposed that 
chromian spinel breakdown during metamorphism to form 
chlorite (Shen et al., 1988) at relatively high temperatures 
(> 400ºC; Kimball 1990) and in the presence of aqueous 
fluids (Merlini et al., 2009); implies outward Al and Mg 
diffusion from chromian spinel, leaving a residual Fe3+-
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enriched and Al-, Mg-depleted Cr-spinel (ferrian chromite) 
(Kimball, 1990; Merlini et al., 2009). The serpentinization of 
both pyroxene and olivine at temperatures between 200 
and 300º C (Bach et al., 2006) could favor the creation of 
an aqueous fluid rich environment necessary for the 
chlorite and ferrian chromite formations.  

The progressive increase in Fe3+ and depleted in Mg in the 
investigated chromian spinel from core to rim (Tables 2, 3 
online, see also Raman spectroscopy part) suggests a change 
in the alteration conditions to more oxidative states with 
increasing metamorphism (Anzil et al., 2012). At high oxidative 
conditions [i.e. increase in f(O2)], the reaction of chromian 
spinel with serpentine favor to produce chlorite and Cr-
magnetite (Mellini et al., 2005). This increase in the 
oxidative conditions (necessary for Cr-magnetite formation) 
may be took place after the late stages of serpentinization 

or during lower temperature amphibolite facies 
metamorphism (Bach et al., 2006). The Irvine’s spinel prism 
(Irvine, 1965) indicates that the f(O2) for the chromian spinel 
is relatively low, whereas the ferrian chromite was formed 
under relatively high f(O2), which increases upward to 
produce Cr-magnetite (Fig. 9d). 

Furthermore, there is a miscibility gap between 
chromian spinel and ferrian chromite / Cr-magnetite (rims) 
corresponding to metamorphism around ~500- 600° C (Fig. 
4a) and there is no complete solid solution between ferrian 
chromite and Cr-magnetite (Fig 4a), which reflects the 
incomplete re-equilibration between chromian spinel and its 
alteration products in lowest amphibolite facies (i.e. around 
500- 600°C).  

 

 

Fig. 9. Plot of the analyzed pyroxenes on (a) SiO2 –TiO2 –Na2O diagram (Beccaluva et al., 1989), (b) Ti vs. Aliv diagram 
(Beccaluva et al., 1989), (c) chromian spinel compositions in equilibrium with Fo94 and Fo88 olivine at different temperatures 
(Barnes, 2000; Sack and Ghiorso, 1991), (d) plot of Fe3+# vs. Mg# in spinel phases (oxygen fugacity isobars after Irvine, 
1965); light green arrow represents the compositional trend of some Egyptian chromites. 
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In addition, the presence of a compositional gap 
between ferrian chromite and Cr-magnetite, which widens 
rapidly below 550°C (Barnes, 2000) and disappears above 
600°C (Sack and Ghiorso, 1991), reflects their formation 
during the lower amphibolite facies. A further evidence can 
be elicited from the Mg and Fe2+# of ferrian chromite and 
Cr-magnetite (Tables 3, 4 online), which is matched with 
those of the lower amphibolite facies metamorphism given 
by Barnes (2000). The chlorite geothermometry add 
another clue, in which proposes temperatures between 
150° and 350°C for the serpentinization-chloritization 
processes. 

 
5.4. Genesis of pyroxenites 

The investigated pyroxenites display a very close 
relation to the serpentinites in term of mineral chemistry, 
trace elements (Fig 3c) and REE (Fig. 3d) geochemistry, 
which reflect that both are co-genetic with the rest of the 
mantle suite. Therefore, the KAD pyroxenites genesis could 
be related to the contamination of their mantle source by 
crustal material and/or subduction-related slab fluids during 
mantle evolution in supra subduction zone (SSZ) setting. 
Thus the low TiO2 contents (0.07 -0.12 wt%, Table 1 online), 
the enrichment in LILE (Fig 3c) and LREE (Fig. 3d) and the 
Nb depletion (Fig. 3c) indicate the remelting of a highly 
depleted mantle source (Sun and Nesbitt, 1978) and 
suggest their formation in a SSZ environment (i.e forearc). 
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