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This study is the first to report the isolation and bioactivity of Penicillium rubens from 
Cucumis sativus L. leaves. Penicillium rubens was tested for its potential antibacterial, 
anti-inflammatory, and wound healing properties. The dried ethyl acetate extract of P. 
rubens (EPR) demonstrated antibacterial activity against Pseudomonas aeruginosa 
(ATCC 27853), showing a 24 mm inhibition zone in the agar disc diffusion method, 
where the disc was saturated with 1000 µg/mL of EPR in ethyl acetate. The minimum 
inhibitory concentration (MIC) of EPR against 20 clinical isolates of Pseudomonas 
aeruginosa ranged from 128 to 1024 µg/mL, as determined by the broth microdilution 
assay. Stimulation of WI38 cells with 20 µg/mL lipopolysaccharide (LPS) led to ~3.08-
fold increase± 0.03 in the gene expression of the proinflammatory cytokine, TNF-α, as 
determined by qRT-PCR, while EPR treatment of LPS-stimulated cells led to a 
significant reduction in the expression of TNF-α to only ~1.09-fold increase± 0.02 
(p<0.0001), providing insights into possible anti-inflammatory activity. The EPR effect 
on wound healing process was investigated in vitro where EPR treatment significantly 
increased the wound closure percentage (66.64% ± 5.61 and 99.94% ± 0.05) compared 
to the control cells (13.79% ± 3.98 and 83.37% ± 0.05) as indicated at 24 and 48 hours 
post-wound induction, respectively. Further studies may be needed to characterize the 
bioactive compounds responsible for the above-mentioned biological activities, which 
may help explore alternative therapeutically active compounds. 

 

1. Introduction  

The current study is the first to document the isolation 
and bioactivity of Penicillium rubens from Cucumis 
sativus L. leaves. Cucumis is a genus of tendril-bearing 
twining plants that include gerkins, melons, and cucumbers 
[1]. Cucumber (Cucumis sativus L.) is a member of the 
family Cucurbitaceae and, traditionally, has been utilized as 
a cooling agent, to heal skin issues, and to eliminate 
overall debility in both rural and urban regions [2]. This 
plant has been shown to have several pharmacological 
effects such as anti-inflammatory, anti-wrinkle, 
antibacterial, antidiabetic, and hypolipidemic effects [3]. 

Endophytic fungi are a wide group of microorganisms 
that colonize several plant parts, such as leaves, stems, 
and roots, without posing any threat to the host plant [4]. 
Fungal endophytes have recently been the subject of 
numerous studies as alternate sources of substances with 
therapeutic potential [5].  
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Diverse therapeutic advantages, such as antibacterial, 
antifungal, antioxidant, antitumor, enzymatic, and 
anticancer abilities, have been demonstrated by the 
bioactive compounds produced by endophytes [6]. 
Endophyte-produced secondary metabolites are 
structurally and functionally similar to those produced by 
their associated host medicinal plants [7-9]. Previous 
research reported an anti-inflammatory effect of some 
fungal bioactive compounds [10], such as the metabolites 
from Penicillium bialowiezense [11]. Another study 
reported the anti-inflammatory activity of indole-terpenoids 
from Penicillium sp. HFF16 [12]. In addition, different 
fungal-based derivatives have shown enhancement in the 
wound healing process [13-15]. 

Natural products, including the bioactive compounds 
extracted from endophytic fungi, may be a possible 
alternative to be used as antibacterial agents. A previous 
study reported an anti-Pseudomonas aeruginosa effect of 
a dilactone terpenoid from the fungal endophyte 
Neofusicoccum luteum [16]. Another study recorded 
antibacterial and anti-quorum sensing activities of tannic 
acid isolated from Penicillium oxalicum, an endophytic 
fungus from Opuntia ficus-indica [17]. Also, 1H-pyrrole-
2,5-dicarboxylic acid, isolated from Perenniporia 
tephropora FF2 which is an endophytic fungus from Areca 
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catechu L., showed a quorum sensing inhibitory effect on 
Pseudomonas aeruginosa, and represented an antibiotic 
accelerant when combined with piperacillin or gentamycin 
[18]. 

Pseudomonas aeruginosa poses a serious threat to 
medicine because of its antibiotic resistance and capacity 
to cause serious infections, especially in 
immunocompromised people [19]. This bacterium may 
grow in various conditions, making it a constant threat in 
hospital settings [20]. Treatment is complicated by its 
resistance mechanisms, which calls for constant research 
into novel therapeutic approaches. Reducing 
Pseudomonas aeruginosa influence on public health 
requires an understanding and commitment to control [21].  

The endophytic fungus Penicillium rubens has 
demonstrated significant antimicrobial activity due to its 
ability to produce bioactive secondary metabolites, 
particularly β-lactam antibiotics like penicillin. Research has 
shown that crude extracts from P. rubens exhibit strong 
antibacterial effects against Gram-positive pathogens such 
as Staphylococcus aureus and Bacillus subtilis, likely due 
to the inhibition of bacterial cell wall synthesis [22-25]. 
Additionally, some studies indicate moderate effectiveness 
against Gram-negative bacteria, though their outer 
membrane may limit antibiotic penetration [26]. 
Furthermore, bioactive compounds such as alkaloids and 
peptides found in P. rubens extracts contribute to their 
broad-spectrum activity [22,27,28]. These bioactive 
metabolites could have applications in medicine for 
combating multidrug-resistant (MDR) infections, or in 
agriculture as biocontrol agents against plant pathogens 
[29-32]. Beyond antibacterial activity, P. rubens extracts 
have also exhibited antifungal properties, potentially 
inhibiting pathogens like Candida albicans, Aspergillus 
niger, and Fusarium oxysporum [29]. Given the global rise 
of antibiotic resistance, exploring P. rubens and its 
secondary metabolites may provide new therapeutic 
options for infectious diseases and sustainable alternatives 
to synthetic antimicrobial agents.  

The present study aimed to investigate the potential 
wound healing and anti-inflammatory activities of the 
extract of P. rubens isolated from the leaves of Cucumis 
sativus, and its antibacterial activity against Pseudomonas 
aeruginosa.  

2. Materials and Methods 

2.1. Plant source of the endophytic Penicillium rubens 

Penicillium rubens was isolated from healthy leaf 
segments of the medicinal plant C. sativus obtained from a 
nearby farm in Tanta City, Al-Gharbia Governorate, Egypt. 
It was identified by staff member of the Botany Department, 
Faculty of Science, Tanta University, Tanta. A voucher 
specimen (PD-7-22-D6) has been preserved at 
Pharmacognosy Department at Tanta University, Tanta. 

2.2. Isolation of the endophyte Penicillium rubens from 
cucumber leaves 

For isolation, the cucumber leaf segments were rinsed 
with tap water until clean, surface sterilized using a solution 

of 70% ethanol for 1 min, rinsed 3-4 times using sterile 
water for 2 min, and dried. The segments were inoculated 
into sterilized potato dextrose agar medium supplemented 
with 250 mg/L amoxycillin to prevent bacterial growth 
following surface sterilization, and then they were cultured 
for a week at 25± 2 °C. Growing fungus on agar plates was 
repeatedly subcultured with fresh PDA media resulting in 
pure strains of Penicillium rubens. 

2.3. Morphological characterization of Penicillium 
rubens 

Penicillium rubens was inoculated into Potato Dextrose 
Agar (PDA) and the colony morphology was evaluated. 

2.4. Fermentation and extraction of fungal culture 
filtrate 

The ethyl acetate extract of Penicillium rubens (EPR) 
was prepared for subsequent characterization and 
biological testing. The cultures under investigation were 
grown on PDA plates at 25 ± 2 °C for 7 days and a small 
block was transferred to pre-autoclaved Erlenmeyer flasks 
(1 L) containing wheat (100 g) in sterile water under sterile 
conditions. The fungus was grown under static conditions 
for four weeks at room temperature away from light. The 
fungal broth was extracted with ethyl acetate three times 
and then subjected to filtration over Whatman filter paper. 
The ethyl acetate fraction was collected and dried out using 
a rotary evaporator, at 45 °C and the crude extract (230 gm 
of dried extract, 20% yield, brown color) was stored at 4 °C 
for further studies. 

2.5. In vitro antibacterial activity 

In this study, twenty clinical isolates of Pseudomonas 
aeruginosa were sourced from the culture collection of the 
Microbiology and Immunology Department, Faculty of 
Pharmacy, Tanta University, to evaluate the antibacterial 
properties of EPR. The agar disc diffusion method was 
used to assess the activity of EPR against the reference 
strain Pseudomonas aeruginosa (ATCC 27853). For this, 
one disc was loaded with EPR (1000 µg/mL in ethyl 
acetate), while discs saturated with gentamicin (40 µg/mL) 
and ethyl acetate (undiluted) served as the positive and 
negative controls, respectively [33]. Furthermore, the 
minimum inhibitory concentration (MIC) of EPR for the 
twenty isolates was determined using the broth 
microdilution method in a 96-well microtiter plate [34]. EPR 
concentrations were prepared in a serial two-fold dilution, 
ranging from 1024 to 32 µg/mL. The agar disc diffusion and 
MIC determination were conducted in triplicates. 

2.6.  In vitro anti-inflammatory activity  

Using DMSO, different concentrations of EPR dried 
extract, in addition to the anti-inflammatory drug, piroxicam, 
were prepared and suspended in serum-free RPMI 
medium. WI38 human fibroblast cells were employed to 
assess the cytotoxicity of EPR. In a 96-well plate, WI38 
cells were plated at a density of 3x103 cells/ well, and 
incubated with different EPR concentrations and10 µg/mL 
piroxicam for 48 h. MTT assay was employed to assess the 
viability of cells 
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Using lipopolysaccharide (LPS)-stimulated WI38 cells, 
the EPR effect on the gene expression of the pro-
inflammatory cytokine, TNF-α, was investigated [35, 36]. 
The cells were plated at a density of 5x104 cells/ well in a 
12-well plate, with a complete medium of RPMI, LPS was 
added at a concentration of 20 µg/mL. Then, the cells were 
incubated for 24 hours. After that, the supernatant was 
discarded after centrifuging the plate for 5 min at 1650 rpm. 
Then, 10 µg/mL piroxicam or 1/10 of IC50 of EPR was 
added. The cells were then incubated for 48 hours. After 
centrifugation, RNA isolation kit (iNtRON Biotechnology, 
Korea) was used to isolate RNA, following the 
manufacturer's instruction. One µg RNA was converted into 
cDNA using SensiFAST cDNA synthesis kit (Bioline, 
London, UK). The following steps were conducted for 
quantitative PCR: 1 µL of cDNA, 0.5 µl of 10 pmoles/mL 
forward primer, 0.5 µl of 10 pmoles/mL reverse primer and 
10 µL SensiFAST SYBR (Bioline, London) were mixed. 
The reaction mixture was completed to 20 µL using 
nuclease-free water. The following program was employed 
using a CFX96™ Real-Time System (BIO-RAD, USA): 
heating at 95 ºC for 10 min, then 40 cycles of 95 ºC for 15 
sec, 60 ºC for 30 sec and 72 ºC for 30 sec. The cycle 
threshold (Ct) of TNF-α gene was normalized with Ct of the 
housekeeping gene, beta-actin. Sequences of the primers 
used for TNF-α amplification were 5'-
CTCTTCTGCCTGCTGCACTTTG-3' for the forward primer 
and 5'-ATGGGCTACAGGCTTGTCACTC-3' for the reverse 
one, while 5'-CACCATTGGCAATGAGCGGTTC-3' and 5'- 
AGGTCTTTGCGGATGTCCACGT-3' were the sequences 
of the forward and reverse primers of beta-actin, 
respectively [37].  

2.7. In vitro wound healing assay   

Assessment of wound healing process was performed 
as previously described [38], with modifications. WI38 cells 
were plated in a 24-well plate at a density of 104 cells/ well. 
The plate was incubated for 24 hours. Then, serum-free 
RPMI was used to wash the cells. Using a sterile 200 µL-
pipette tip, the cell monolayer was scratched (wounded), 
then washed with PBS. The cells were then incubated with 
or without 1/10 of IC50 of EPR for 48 hours. Using phase 
contrast microscopy, the migration of the cells in the 
denuded zone was photographed. To quantify the relative 
wound size at 0, 24, and 48 hours after wound induction, 
the Image J version 1.49 software was used.  

2.8. Statistical analysis  

An ANOVA test was performed using Graphpad Prism 
10 to investigate the anti-inflammatory activity. An 
unpaired t-test was used for the wound healing assay, the 
data represented the mean ± standard deviation. The data 
represented the mean ± standard deviation 

3. Results 

3.1. Morphological characterization of Penicillium 
rubens 

The color of the colony was greenish white with a 
slightly woolly texture. The reverse is buff in color. It has 
filiform edges and a slightly uneven surface (Figure 1). 

 

Figure 1. Colony morphology of Penicillium rubens 
isolated from the leaves of C. sativus on PDA medium. 

 

3.2. In vitro antibacterial activity 

EPR exhibited antibacterial activity against the 
reference strain Pseudomonas aeruginosa (ATCC 27853) 
as determined by the agar disc diffusion method with an 
inhibition zone diameter (IZD) of 24 mm compared to IZDs 
of gentamicin and ethyl acetate (22 and 12 mm, 
respectively). The minimum inhibitory concentration (MIC) 
of EPR against twenty clinical isolates of Pseudomonas 
aeruginosa was assessed using the broth microdilution 
assay, with MIC values ranging from 128 to 1024 µg/mL 
(Table 1). 

 

Table 1. MIC values of EPR against the tested 
Pseudomonas aeruginosa isolates (n=20). 

  MIC (µg/mL) Number of isolates (%) 

128 1 (5) 

256 8 (40) 

512 9 (45) 

1024 2 (10) 

 

3.3. The In vitro anti-inflammatory effect of EPR 

On WI38 human fibroblast cells, the IC50 of EPR was 
59.82 µg/mL. One tenth of IC50 of EPR was tested for the 
anti-inflammatory activity on LPS-stimulated WI38 cells. 
The anti-inflammatory drug, piroxicam, at a concentration 
of 10 µg/mL was used for comparison. Stimulation with 
LPS led to ~3.08-fold increase± 0.03 in TNF-α gene 
expression compared to the non-stimulated cells. EPR 
treatment of LPS-stimulated cells, showing more than 90% 
viability of the cells, led to only ~1.09-fold change ± 0.02 
compared to the non-stimulated cells, which represents a 
significant reduction in the expression of TNF-α compared 
to the LPS-stimulated control cells (p<0.0001). LPS-
stimulated cells treated with piroxicam showed a significant 
reduction in TNF-α gene expression compared to LPS-
stimulated control cells (p<0.0001) (Figure 2).   
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Figure 2. EPR decreases the gene expression of TNF-α. 
Data represented mean ± standard deviation (n=2), 
ANOVA test. 

3.4. EPR improves the in vitro wound healing  

Treatment with EPR promoted cell migration and 
wound closure in WI38 cells (Supplementary Figure S1). 
As shown in Figure 3, Treatment with EPR significantly 
increased the wound closure percentage (66.64% ± 5.61) 
compared to the control cells (13.79% ± 3.98) as indicated 
at 24 hours post-wound induction (P = 0.012). Also, the 
wound closure percentage significantly increased in EPR-
treated cells (99.94% ± 0.05) compared to the control ones 
(83.37% ± 0.05) at 48 hours post-wound induction 
(p<0.0001). 

 

Figure 3. Improvement of the in vitro wound healing 
process by EPR. Data represented mean ± standard 
deviation (n=2), two-tailed unpaired t-test. 

 

4. Discussion 

The antibacterial effects of endophytic fungi against 
different bacterial species have been investigated in 
previous studies [39].  A peptide produced by the 
endophytic fungus Aspergillus tamarii showed marked 
antimicrobial activity against Escherichia 
coli, Pseudomonas aeruginosa, Staphylococcus aureus, 
and Bacillus subtilis [40]. Ethyl acetate extract of three 
endophytic Aspergillus strains showed antibacterial effects 
on gram-negative bacteria, such as Klebsiella pneumonia, 
Pseudomonas aeruginosa, Salmonella typhimurium, and 
Escherichia coli, and on gram-positive bacteria, such as 
Bacillus subtilis, Bacillus cereus, and Staphylococcus 
aureus [41]. The current study focused on the anti-
pseudomonas aeruginosa activity of P. rubens, as an 
endophytic fungus isolated from Cucumis sativus leaves for 
the first time. The findings of the current study showed that 
the extract of the endophytic fungus P. rubens (EPR) has 
shown potential antipseudomonal activity. Previous studies 
have documented specific bioactive compounds in P. 
rubens extracts. Rubensteroid A, a steroid from P. rubens 
was reported to have an antibacterial effect [30]. Another 
study reported a strain of P. rubens with promising 
production of phenoxymethyl penicillin [22]. The marine-
derived P. rubens BTBU20213035 was found to produce a 
secondary metabolite with an antibacterial effect [27]. One 
proposed mechanism of action involves the inhibition of 
peptidoglycan biosynthesis by β-lactam antibiotics, such as 
penicillin-derived compounds, leading to bacterial cell wall 
destabilization and lysis [22,25,42]. Additionally, secondary 
metabolites such as citrinin, which target bacterial efflux 
pumps, could reduce the ability of Pseudomonas 
aeruginosa to expel toxic compounds and increase 
susceptibility to antimicrobial agents [43].  

The anti-inflammatory activity of the extract was 
investigated by detecting the effect of EPR treatment on 
TNF-α gene expression in LPS-stimulated WI38 cells, 
where a marked decrease in TNF-α gene expression was 
detected in EPR-treated cells, compared to the control 
LPS-stimulated ones.  In agreement, secondary 
metabolites, such as sorbicillinolides, isolated from the 
marine-derived Penicillium rubens, showed anti-
inflammatory properties [10,44]. These sorbicillinolides 
showed a significant anti-neuroinflammatory through the 
inhibition of the production of nitric oxide and prostaglandin 
E2 [44]. Also, a study on Penicillium sp. HFF16 from the 
rhizosphere soil of Cynanchum bungei Decne reported that 
indole-terpenoids isolated from the fungus had anti-
inflammatory activities through an inhibitory action on nitric 
oxide, TNF-α, and IL-6 production [12]. Another study on 
Penicillium bialowiezense reported the anti-inflammatory 
effect of spiroditerpenoids isolated from the fungus, 
through suppression of the expression of pro-inflammatory 
mediators, such as IL-6, IL-12,  (IL)-1β, TNF-α, 
prostaglandin E2, and nitric oxide [11]. Further mechanistic 
studies on EPR are still needed to investigate its effect on 
other factors that may affect the inflammation process, in 
addition to TNF-α. 
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In addition, the wound healing effect of EPR was 
investigated in vitro on WI38 cells, where a significant 
enhancement of healing was recorded. In agreement, it 
was reported that nanocellulose-based anthraquinone from 
Penicillium flavidorsum, a marine fungus, had a positive 
outcome in the context of wound healing progress in a rat 
model [14]. Another study showed the promotion of 
diabetic wound healing in mice by a secondary metabolite 
of Penicillium purpurogenum, an endophytic fungus [15]. 
Notably, the scratch wound healing assay was employed to 
investigate the effect of cytochalasin H, isolated from an 
endophyte, on cell migration in A549, a human lung 
adenocarcinoma cell line, where cytochalasin H treatment 
decreased the migration ability of the carcinoma cells [45]. 

Further studies are still needed for the purification and 
identification of the compounds responsible for the 
biological activities in EPR extract, using techniques such 
as LC-MS. Also, the antibacterial effect may be tested 
against a wider range of bacterial spectrum or resistant 
strains. 

5. Conclusion 

The current study aimed to investigate the anti-
Pseudomonas aeruginosa, wound healing, and anti-
inflammatory activities of the dried ethyl acetate extract of 
P. rubens isolated from cucumber leaves for the first time. 
Further research may be needed to purify, determine, and 
characterize the bioactive compounds in the extract, to 
which the reported biological activities are attributed. 
Further studies may also include in vivo efficacy and 
toxicity studies, which may help develop EPR as a new 
therapeutic or cosmeceutical candidate.  
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