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In this work, a new numerical method for solving the Fractional Bagley-Torvik problem 
is established. The fundamental idea behind this novel approach is the clever 
incorporation of fourth-kind Chebyshev polynomials into the well-known operational tau 
technique.This study's main goal is to improve the accuracy and efficiency of the 
Fractional Bagley-Torvik equation solution. Managing non-homogeneous boundary 
conditions effectively is a crucial breakthrough that makes this possible. It is possible 
to transform these non-homogeneous situations into a more controllable and tractable 
homogenous form by using a methodical transformation process. This transformation 
phase enhances the numerical method's overall accuracy and efficiency while greatly 
streamlining the solution procedure. The study includes a number of carefully chosen 
numerical examples to confirm the effectiveness and usefulness of this suggested 
method. The accuracy and resilience of the Chebyshev polynomial-based operational 
tau approach in handling the intricacies of the Fractional Bagley-Torvik equation are 
demonstrated by these actual examples. By using these examples, the study hopes to 
demonstrate convincingly that this new approach provides a workable and efficient way 
to solve this difficult class of differential equations. 

 

1. Introduction  

Fractional differential equations (FDEs) have been 
studied in great detail in a variety of fields, including applied 
mathematics, finance, engineering, and other areas of 
applications [1, 2]. The new properties of these fractional 
differential and integral operators have led to a mass 
generalization of classical models to their fractional version 
in recent decades. Many fractional derivative operators, 
including the Caputo operator, Riemann-Liouville operator, 
Hadamard operator, and others, have been used 
extensively in scientific research [3, 4]. FDEs are used to 
model a lot of problems in a variety of fields, including the 
fractional Bagley-Torvik (B-T) equation [5]. At the same time, 
they have been studied both analytically and numerically [3], 
and numerous researchers have solved this equation 
numerically. Furthermore, this problem has been 
numerically solved by numerous experts. For instance, in 
[6], Abu Arqub and Maayah used an iterative reproducing 
kernel approach to solve the fractional B-T equation; in [7], 
Cenesiz et al. used the modified Taylor collocation method; 
and in [8], Krishnasamy and Razzaghi used the fractional 
Taylor method.The majority of FDEs do not yield an 
accurate solution.  
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Thus, a variety of numerical techniques, including 
spectral techniques [9], differential transform techniques 
[10], and finite element techniques [11], have been used to 
generate approximate solutions to the FDEs. Spectral 
approaches are the most crucial techniques. There are three 
variations of them: the Tau, Collocation, and Galerkin 
methods. Numerous equations, such as partial differential 
equations, ordinary differential equations, and FDEs, can be 
solved using spectral methods. Numerous writers have 
made extensive use of these versions, such as Abd-
Elhameed and Youssri [12], who presented an 
approximation method based on the tau method for solving 
coupled systems of FDEs. A collocation approach was used 
by Abd-Elhameed et al. [13] to resolve second-order 
nonlinear two-point boundary value issues. In order to tackle 
third-order linear two-point boundary value problems, Abd-
Elhameed [14] used the Galerkin approach. Chebyshev 
polynomials are well-known for their optimal approximation 
properties and are frequently employed in spectral methods 
due to their fast convergence and numerical stability. While 
the first and second kinds of Chebyshev polynomials are 
widely studied, the fourth-kind Chebyshev polynomials offer  

Previous Fibonacci-based method. The results confirm 
that distinct orthogonality properties and are particularly 
effective for dealing with certain types of boundary 
conditions. These features make them suitable for use in 
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fractional differential equations like the Bagley-Torvik 
equation, where maintaining numerical precision is critical.  

The primary objective of this study is to develop a robust 
numerical algorithm based on Chebyshev polynomials of the 
fourth kind and apply it to solve the fractional Bagley-Torvik 
equation efficiently. To achieve this, the non-homogeneous 
boundary conditions of the equation are first transformed 
into homogeneous ones, making it compatible with the 
polynomial approximation framework. The solution is then 
expanded in terms of Chebyshev polynomials, and the tau 
method is applied to convert the fractional differential 
equation into a system of algebraic equations. These 
equations are solved using Gaussian elimination, providing 
a computationally feasible solution even for large systems. 

The paper also present several numerical examples to 
validate the effectiveness of the Chebyshev-based 
approach, comparing its performance against the 
Chebyshev polynomials not only enhance convergence but 
also offer greater numerical stability, particularly for higher-
degree approximations . 

This study contributes to the growing body of research 
on fractional calculus and numerical methods, offering an 
improved solution technique for the Bagley-Torvik equation. 
Furthermore, the proposed Chebyshev operational tau 
method has the potential to be extended to other types of 
fractional differential equations, expanding its application in 
various scientific and engineering fields .This work is 
structured as follows: introduces key mathematical 
properties of Chebyshev polynomials of the fourth kind, 
explains their importance in the tau method, and highlights 
the computational advantages they offer in section 1. In 
section 2, we go into function approximation and the 
Chebyshev spectral collocation technique. In section 3, a 
Chebyshev polynomials of the fourth kind for solving Bagley-
Torvik equation is analyzed and presented .Section 4 covers 
the illustrated examples that demonstrate the correctness 
and efficiency of the current approach. Section 5 concludes 
by summarizing the research result.  

2. Chebyshev polynomial of fourth-kind and its 
properties 

The fourth-kind Chebyshev polynomials are introduced 
in this section, along with their features that are essential to 
their use in the operational tau approach for solving the 
fractional Bagley-Torvik equation. In contrast to the more 
widely used Chebyshev polynomials of the first and second 
kinds, the fourth-kind Chebyshev polynomials, represented 
by 𝑊𝑛(𝑥), have unique orthogonality and weighting functions 
that enable them to be used for approximating functions in 
certain situations, especially those where boundary behavior 
and numerical stability are crucial. 

The Chebyshev polynomials of the fourth-kind 𝑊𝑛(𝑥), 

have unique orthogonality and weighting functions that , are 
defined using trigonometric expressions similar to other 
kinds of Chebyshev polynomials but with a distinct phase 
shift. They can be expressed as [15].  

𝑊𝑛(𝑥) = √
2

1−𝑥
sin ((𝑛 +

1

2
)  arccos 𝑥),               (2.1) 

With a cosine function altered by a 
𝑛𝜋

2
 phase shift, this 

formula emphasizes the polynomials’ oscillating nature. The 
orthogonality features of the fourth-kind polynomials differ 
significantly from those of their first and second counterparts 
due to this phase shift. 

      In spectral techniques, the orthogonality of fourth-kind 
Chebyshev polynomials is essential because it guarantees 
that expanding the solution in terms of these polynomials 
minimizes the residual error in the best possible way. Over 

the interval [−1,1], the fourth-kind Chebyshev polynomials 

are orthogonal with respect to a particular weight function, 
as shown by [15]:  

∫
1

−1
𝑊𝑛(𝑥) 𝑊𝑚(𝑥) 𝑤(𝑥)𝑑𝑥 = 0,    for𝑛 ≠ 𝑚 ,      (2.2) 

 where 𝑤(𝑥) is the weight function associated with these 

polynomials, which is defined as[15]:  

         𝑤(𝑥) = √
1−𝑥

1+𝑥
 .                                 (2.3) 

This weight function is essential to the precision of the 
polynomial approximations and is different from those 
applied to the first and second types of Chebyshev 
polynomials . As the number of terms in the series expansion 
rises, any approximation produced using the polynomials 
will converge optimally due to their orthogonality. 

       Recurrence relations are crucial for the computational 
application of polynomial-based techniques because they 
offer an alternative to computing higher-order polynomials 
directly from their trigonometric definitions. The fourth-kind 
Chebyshev polynomials satisfy the recurrence relation as 
follows [15]: 

       𝑊𝑛+1(𝑥) = 2𝑥 𝑊𝑛(𝑥) − 𝑊𝑛−1(𝑥),                (2.4) 

for 𝑛 ≥ 1, with the initial conditions[15]:  

𝑊0(𝑥) = 1,    𝑊1(𝑥) = 2𝑥 + 1. 

For big n, this recurrence relation makes it possible to 

compute 𝑊𝑛(𝑥) efficiently, which is especially helpful for 

resolving differential equations that need for high-order 
polynomials in order to produce accurate 
approximations.When resolving differential equations, when 
precise approximations necessitate the use of high-order 
polynomials, this recurrence relation makes it possible to 

compute 𝑊𝑛(𝑥)  efficiently for large n. 

      Chebyshev polynomials are used in the tau method 
because of their better approximation qualities. Particularly 
for issues involving fractional derivatives, like the Bagley-
Torvik equation, these polynomials provide an ideal 
foundation for the spectrum representation of differential 
equation solutions. 
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      In the operational tau method, the solution u(x) of the fractional differential equation is approximated by a series 
expansion in terms of Chebyshev polynomials of the fourth-kind:   

                                          𝑢(𝑥) ≈ ∑𝑀
𝑖=0 𝑐𝑖  𝑊𝑖(𝑥),                                                                     (2.5) 

Where the unknown coefficients to be found are denoted by 𝑐𝑖. By applying orthogonality criteria to the residual with respect 
to the Chebyshev basis, the tau method minimizes the differential equation’s residual over the interval. 

3. The fractional B-T equation’s numerical approach and basis function selection 

      This section will develop the fractional Bagley-Torvik equation, which is a differential equation of second order that has 
both fractional and integer derivatives. When describing the motion of a rigid plate in a viscoelastic or Newtonian fluid, where 
the dynamics are controlled by both elastic and damping forces, the Bagley-Torvik equation is widely used. The memory-
dependent, non-local behavior of viscoelastic materials is captured by the fractional order of the derivatives. The fractional 
Bagley-Torvik equation can be written as[16]:  

            𝑎1 𝐷
2 𝑣(𝑥) + 𝑎2 𝐷

3

2 𝑣(𝑥) + 𝑎3 𝑣(𝑥) = ℎ(𝑥),    𝑥 ∈ (0, ℓ),                                  (3.1) 

where 𝑎1, 𝑎2 and 𝑎3 are constants representing the physical properties of the system, 𝑣(𝑥) is the unknown function to be 

solved, ℎ(𝑥)  is a source term, and 𝑥 represents the spatial variable over the domain  [1, ℓ]. 

      Boundary conditions confine the solution of the Bagley-Torvik equation in realistic physical models. Non-homogeneous 

boundary conditions at the domain’s ends 𝑥 = 0 and 𝑥 = ℓ are typically included with the equation. The following is the 

format of these boundary conditions::  

                                                   𝑣(0) = 𝑣0,    𝑣(ℓ) = 𝑣ℓ.                                                  (3.2) 

 In which the boundary values 𝑣0 and 𝑣ℓ are provided. The direct application of spectral methods, such as the tau approach, 
is complicated by non-homogeneous boundary circumstances because the polynomials are often designed for homogeneous 
boundary conditions. The problem is transformed into one with homogeneous boundary conditions in order to get around 
this. 

       In order to use the tau approach with Chebyshev polynomials, we first convert the original equation with non-
homogeneous boundary conditions into a homogeneous problem. To do this, a new function 𝑢(𝑥) that takes into 
consideration the boundary conditions is introduced, so that [16]:  

              𝑣(𝑥) = 𝑢(𝑥) − (1 −
𝑥

ℓ
) 𝑣(0) −

𝑥

ℓ
𝑣(ℓ),                                                               (3.3) 

 The function 𝑢(𝑥) is chosen so that it satisfies homogeneous boundary conditions:  

                                                                       𝑢(0) = 𝑢(ℓ) = 0,                                                                 (3.4) 

 Substituting this transformation into the original Bagley-Torvik equation, we obtain a modified form of the equation in terms 
of 𝑢(𝑥) :  

            𝑎1 𝐷2 𝑢(𝑥) + 𝑎2 𝐷
3

2 𝑢(𝑥) + 𝑎3 𝑢(𝑥) = 𝑘(𝑥),                                                    (3.5) 

 where 𝑘(𝑥) is a modified source term that incorporates the effects of the original boundary conditions and the source term 

ℎ(𝑥). Specifically, 𝑘(𝑥) is given by: 

  𝑘(𝑥) = ℎ(𝑥) − 𝑎1 (1 −
𝑥

ℓ
) 𝑣0 − 𝑎2 (1 −

𝑥

ℓ
)

3

2
𝑣0 − 𝑎3 (1 −

𝑥

ℓ
)

2
𝑣0.                                (3.6) 

      This formulation allows us to proceed with the tau method while preserving the boundary conditions inherent in the 
physical problem. 

 

Definition 1.1 As shown in Podlubny [3], the Caputo definition of the fractional-order derivative is defined as:  

          𝐷𝛽ℎ(𝑥) =
1

Γ(𝑘−𝛽)
∫

𝑥

0
(𝑥 − 𝑡)𝑘−𝛽−1 ℎ(𝑘)(𝑡) 𝑑𝑡,    𝛽 > 0, 𝑥 > 0,    𝑘 − 1 ≤ 𝛽 < 𝑘,    𝑘 ∈ ℕ,              (3.7) 

 The following properties are satisfied by the operator 𝐷𝛽 for 𝑘 − 1 ≤ 𝛽 < 𝑘, 𝑘 ∈ ℕ:  

                 𝐷𝛽𝐶 = 0                        (𝐶  𝑖𝑠    𝑎    𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡),                                                              (3.8) 
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                 𝐷𝛽𝑥𝑘 = {
0, if𝑘 ∈ ℕ0and𝑘 < [𝛽]

Γ(𝑘+1)

Γ(𝑘+1−𝛽)
𝑥𝑘−𝛽 , if𝑘 ∈ ℕ0and𝑘 ≥ [𝛽]

,                                                                          (3.9) 

 Where ℕ = {1,2, . . . } and ℕ0 = {0,1,2, . . . }. In addition, the notation [𝛽] represents the ceiling function. 

       As explained in Section 2, after the issue is converted into an equation with homogeneous boundary conditions, we use 

a series expansion in terms of fourth-kind Chebyshev polynomials to approximate the answer 𝑢(𝑥). The approximate answer 

is as follows: 

      Substituting the polynomial approximation of 𝑢(𝑥) into the transformed Bagley-Torvik equation, we obtain the residual 

𝑅(𝑥)  

 𝑅(𝑥) = 𝑎1 ∑𝑀
𝑖=0 𝑐𝑖  𝐷

2 𝑊𝑖(𝑥) + 𝑎2 ∑𝑀
𝑖=0 𝑐𝑖  𝐷

3

2 𝑊𝑖(𝑥) + 𝑎3 ∑𝑀
𝑖=0 𝑐𝑖  𝑊𝑖(𝑥) − 𝑘(𝑥), (3.10) 

 We can write the fourth-kind Chebyshev polynomials in form [17]  

 𝑊𝑖(𝑥) = ∑𝑛
𝑘=0

(−1)𝑘+𝑖  (2𝑖+1)  Γ(𝑖+𝑘+1)

√ℎ𝑖 Γ(
3

2
) (𝑖−𝑘)! Γ(𝑘+

1

2
)

𝑥𝑘, (3.11) 

 Where  

 ℎ𝑖 =
(2𝑖+1) Γ(𝑖+1) Γ(𝑖+3/2)

𝑖!  Γ(
3

2
)

2
 Γ(𝑖+

1

2
)

, (3.12) 

make some simplify we get  

 𝑊𝑖(𝑥) = √
1

𝑖! (𝑖+
1

2
)

∑𝑖
𝑘=0

(−1)𝑘+𝑖 Γ(𝑖+𝑘+1)

(𝑖−𝑘)! Γ(𝑘+
1

2
)

𝑥𝑘. (3.13) 

 Theorem 1 [17] The following fractional derivative formulas hold if 𝛽 is in the interval ]1,2].  

 𝐷3/2𝑊𝑖(𝑥) = √
1

𝑖! (𝑖+
1

2
)

∑𝑖
𝑘=0

(−1)𝑘+𝑖 Γ(𝑖+𝑘+1) Γ(𝑘+1)

(𝑖−𝑘)! Γ(𝑘+
1

2
) Γ(𝑘−

3

2
+1)

𝑥𝑘−
3

2, (3.14) 

 where  

 𝐷3/2𝑥𝑘 =
Γ(𝑘+1)

Γ(𝑘−
3

2
+1)

𝑥𝑘−
3

2. (3.15) 

 Now we will make second derivative for fourth-kind Chebyshev polynomials  

 𝐷2𝑊𝑖(𝑥) = √
1

𝑖! (𝑖+
1

2
)
 ∑𝑖

𝑘=0
(−1)𝑘+𝑖 𝑘(𝑘−1) Γ(𝑖+𝑘+1)

(𝑖−𝑘)! Γ(𝑘+
1

2
)

𝑥𝑘−2. (3.16) 

Now we will substitute (3.13), (3.14) and (3.16) in (3.10) we get  

 𝑅(𝑥) = 𝑎1 ∑𝑀
𝑖=0 𝑐𝑖 (√

1

𝑖! (𝑖+
1

2
)

∑𝑖
𝑘=0

(−1)𝑘+𝑖 𝑘! Γ(𝑖+𝑘+1)

(𝑖−𝑘)! Γ(𝑘+
1

2
)

𝑥𝑘−2) 

 +𝑎2 ∑𝑀
𝑖=0 𝑐𝑖 (√

1

𝑖! (𝑖+
1

2
)

∑𝑖
𝑘=0

(−1)𝑘+𝑖 Γ(𝑖+𝑘+1) Γ(𝑘+1)

(𝑖−𝑘)! Γ(𝑘+
1

2
) Γ(𝑘−

3

2
+1)

𝑥𝑘−
3

2) (3.17) 

 +𝑎3 ∑𝑀
𝑖=0 𝑐𝑖 (√

1

𝑖! (𝑖+
1

2
)

∑𝑖
𝑘=0

(−1)𝑘+𝑖 Γ(𝑖+𝑘+1)

(𝑖−𝑘)! Γ(𝑘+
1

2
)

𝑥𝑘) − 𝑘(𝑥). 

 The application of the tau method yields  

 ∫
ℓ

0
𝑅(𝑥) 𝑊𝑖(𝑥) 𝑑𝑥 = 0,    0 ≤ 𝑖 ≤ 𝑀. (3.18) 

 In the unknown coefficients 𝑐𝑖, Eq. 3.17 creates a system of algebraic equations that can be resolved using the Gaussian 

elimination method. 

4 Illustrative Examples 

      The current process is demonstrated using a few numerical examples to demonstrate the practicality and reliability of the 

aforementioned technique.  
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Example 1   .As given in Mdallal et al.[18],consider the fractional B-T equation  

 𝐷(2)𝑣(𝑥) + 𝐷(
3

2
)𝑣(𝑥) + 𝑣(𝑥) = 2 + 4√

𝑥

𝜋
+ 𝑥2,    𝑥 ∈ (0,5). (4.1) 

 subject to  

 𝑣(0) = 0,    𝑣(5) = 25. (4.2) 

 where the exact solution is 𝑣(𝑥) = 𝑥2. Using the transformation (3.3) in Equ.(4.3) and Equ. (4.2) we will get  

 𝐷(2)𝑢(𝑥) + 𝐷
(

3

2
)
𝑢(𝑥) + 𝑢(𝑥) = 2 − 5𝑥 + 4√

𝑥

𝜋
+ 𝑥2,    𝑥 ∈ (0,5), (4.3) 

 subject to  

 𝑢(0) = 0,    𝑢(5) = 0. (4.4) 

and the exact solution 𝑢(𝑥) = 𝑥2 − 5𝑥 . We will convert the interval from (0,5) to (-1,1) then apply the present method to Eq. 

4.3 .  

Table  1: Our Method of Example 1 at 𝑀 = 2 and 𝑀 = 3    

 𝑀   2   3  

Our Method   0   4.14165 × 10−17  

 

Example 2  [16] Consider the fractional Bagley-Torvik Equation 

 

 𝐷(2)𝑣(𝑥) + 𝐷
(

3

2
)
𝑣(𝑥) + 𝑣(𝑥) = 𝑒𝛾𝑥 [1 + 𝛾2 + 𝛾

3

2 erf(√𝛾𝑥)] ,    𝑥 ∈ (0,1), (4.5) 

subject to  

 𝑣(0) = 1,    𝑣(1) = 𝑒𝛾, (4.6) 

 

 whose exact solution is given by 𝑣(𝑥) = 𝑒𝛾𝑥 where erf(𝑥) is defined as:  

 erf(𝑥) =
2

√𝜋
∫

𝑥

0
𝑒−𝑦2

 𝑑𝑦. (4.7) 

Table 2: Campare result of Example 2 at 𝛾 = 1 

𝑀 2 3 4 5 6 

Our methos 1.77544 × 10−2 4.13027 × 10−3 1.40042 × 10−4 4.7002 × 10−6 1.40197 × 10−7 
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Figure  1: The absolute error at M=6 and 𝛾 = 1 of Example 2 . 

 

Table 3: MAE of Example 2 at 𝛾 = 𝜋 

𝑀 2 4 6 8 

Our methos 1.50159 0.140851 0.00130219 1.16051 × 10−5 

 

 

Figure  2: The absolute error at M=9 and 𝛾 = 1 of Example 2 . 

 

Example 3  [8, 19] Consider the the fractional Bagley-Torvik equation  

 𝐷(2)𝑣(𝑥) +
8

17
𝐷(

3

2
)𝑣(𝑥) +

13

51
𝑣(𝑥) =

𝑥
−

1
2

89250√𝜋
(48𝑔(𝑥) + 7√𝜋𝑥𝑓(𝑥)),    𝑥 ∈]0,1], (4.8) 

 subject to  
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 𝑣(0) = 0,    𝑣(1) = 0, (4.9) 

 where  

 𝑔(𝑥) = 16000𝑥4 − 32480𝑥3 + 21280𝑥2 − 4746𝑥, (4.10) 

 and  

 𝑓(𝑥) = 3250𝑥5 − 9425𝑥4 + 264880𝑥3 − 448107𝑥2 + 233262𝑥 − 34578. (4.11) 

The exact solution of Eq. 4.8 is  

 𝑣1(𝑥) = 𝑥5 −
29

10
𝑥4 +

76

25
𝑥3 −

339

250
𝑥2 +

27

125
𝑥. (4.12) 

Table 4: Our method of Example 3 at M=5 and M=7 

𝑀 5 7 

Our methos 0 1.06297 × 10−15 

                

 

                                                    Figure  3: The absolute error at M=4 of Example 3 . 

 

Conclusion 

In this paper, we introduced a reliable numerical method for 
solving the fractional Bagley-Torvik equation with fourth-kind 
Chebyshev polynomials. We converted the original problem 
into a system of algebraic equations that could be solved by 
utilizing the characteristics of these orthogonal polynomials 
and their fractional derivatives. The solution process was 
made much easier by the operational tau technique, which 
guaranteed precision and computing effectiveness. 

References 
[1]  W. M.  Abd-Elhameed and Y.  H.  Youssri.  Spectral solutions 
for fractional differential equations via a novel lucas operational 
matrix of fractional derivatives.  Rom. J. Phys., 61(5-6):795–813, 
2016. 

[2]  W. M.  Abd-Elhameed and Y.  H.  Youssri.  Spectral tau 
algorithm for certain coupled system of fractional differential 

equations via generalized fibonacci polynomial sequence.   Iranian 
Journal of Science and Technology, Transactions A: Science, 
43:543–554, 2019. 

[3]  W. M.  Abd-Elhameed.  Some algorithms for solving third-order 
boundary value problems using novel operational matrices of 
generalized jacobi polynomials.  In  Abstract and Applied Analysis, 
volume 2015, page 672703. Wiley Online Library, 2015. 

[4]  W. M.  Abd-Elhameed, Y.  H.  Youssri and E. H. Doha.  A novel 
operational matrix method based on shifted legendre polynomials 
for solving second-order boundary value problems involving 
singular, singularly perturbed and bratu-type equations.   Math. 
Sci., 9:93–102, 2015. 

[5]  Y.  H.  Youssri. A new operational matrix of caputo fractional 
derivatives of fermat polynomials: An application for solving the 
bagley-torvik equation.   Adv. Differ. Equ., 2017:1–17, 2017. 

[6]  Qasem M Al-Mdallal, Muhammed I Syam, and M. N. Anwar.  A 
collocation-shooting method for solving fractional boundary value 



                                M. A. Taema et al /Frontiers in Scientific Research and Technology 11 (2025) 1 - 8                                         8 

 

problems.   Communications in Nonlinear Science and Numerical 
Simulation, 15(12):3814–3822, 2010. 

[7]  Omar Abu Arqub and Banan Maayah.  Solutions of bagley–
torvik and painlevé equations of fractional order using iterative 
reproducing kernel algorithm with error estimates.   Neural 
Computing and Applications, 29:1465–1479, 2018. 

[8]  Ahmed Gamal Atta, Galal Mahrous Moatimid, and Y.  H.  
Youssri.  Generalized fibonacci operational tau algorithm for 
fractional bagley-torvik equation.   Prog. Fract. Differ. Appl, 
6(3):215–224, 2020. 

[9]  Aytac Arikoglu and Ibrahim Ozkol.  Solution of fractional 
differential equations by using differential transform method.   
Chaos, Solitons & Fractals, 34(5):1473–1481, 2007. 

[10]  Kamal Aghigh, Mohammad Masjed-Jamei, and Mehdi 
Dehghan.  A survey on third and fourth kind of chebyshev 
polynomials and their applications.   Applied Mathematics and 
Computation, 199(1):2–12, 2008. 

[11]  Cem Çelik and Melda Duman.  Crank–nicolson method for the 
fractional diffusion equation with the riesz fractional derivative.   
Journal of computational physics, 231(4):1743–1750, 2012. 

[12]  Yücel Çenesiz, Yıldıray Keskin, and Aydın Kurnaz.  The 
solution of the bagley–torvik equation with the generalized taylor 
collocation method.   Journal of the Franklin institute, 347(2):452–
466, 2010. 

[13]  Yingjun Jiang and Jingtang Ma.  High-order finite element 
methods for time-fractional partial differential equations.   Journal 
of Computational and Applied Mathematics, 235(11):3285–3290, 
2011. 

[14]  Keith Oldham and Jerome Spanier.  The fractional calculus 
theory and applications of differentiation and integration to arbitrary 
order.  Elsevier, 1974. 

[15]  Igor Podlubny.   Fractional differential equations: an 
introduction to fractional derivatives, fractional differential 
equations, to methods of their solution and some of their 
applications.  elsevier, 1998. 

[16]  M.  Razzaghi.  The numerical solution of the bagley–torvik 
equation with fractional taylor method.   Journal of Computational 
and Nonlinear Dynamics, 11:051010–1, 2016. 

[17] Shujun Shen, Fawang Liu, Vo Anh, and Ian Turner.  The 
fundamental solution and numerical solution of the riesz fractional 
advection–dispersion equation.   IMA Journal of Applied 
Mathematics, 73(6):850–872, 2008. 

[18]  Peter J Torvik and Ronald L Bagley.  On the appearance of 
the fractional derivative in the behavior of real materials.   Journal 
of Applied Mechanics, 1984. 

[19]  Y.  H.  Youssri and Ahmed Gamal Atta.  Spectral collocation 
approach via normalized shifted jacobi polynomials for the 
nonlinear lane-emden equation with fractal-fractional derivative.   
Fractal and Fractional, 7(2):133, 2023. 


