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Nonlinear ordinary differential equations are commonly used for modeling physical, 
chemical, and biological systems. Understanding the quality and quantity of these 
systems requires the use of mathematical models and their simulations.  Infectious 
disease mathematical models   are widely used by many researchers. In recent years, 
epidemic models have become a valuable tool for analyzing the dynamics of infectious 
diseases. Unfortunately, often the analytic solution of such differential equations’ 
models cannot be obtained explicitly. Hence, numerical techniques to study 
approximately these models are used. One of the simplest numerical techniques is the 
finite difference methods. This paper aims to present an efficient numerical method to 
study the fractional time SIR epidemic model. The numerical method that used to study 
this model is the nonstandard Grünwald-Letnikov finite difference method. Comparative 
study with the standard methods is done.  Various graphs are presented to describe the 
numerical results. The obtained results indicate that the proposed method has been 
successful applied to efficiently study the SIR epidemic model. 

 

1. Introduction  

It is known that epidemics are one of the most serious 

issues of health in the world which need to be transacted. 

Many studies, for a long time, of the dynamics of epidemic 

diseases have been introduced. Models that include the 

time derivatives and consist of systems of ordinary 

differential equations are the most effective approach to 

study the dynamics of epidemics. In these models, each 

equation represents the change in the number of bodies in 

different categories given by continuous variables. 

Nonlinear ordinary differential equations (ODEs) are 

commonly used for modeling physical, chemical, and 

biological systems. Mathematical models and their 

simulations are important for understanding the quality and 

quantity of these systems [1]. 

Fractional calculus (FC) is a generalization of the 

integer order calculus [2]. In fractional calculus, 

researchers try to solve problems with α-order derivatives 

and integrals, where there are several definitions for 

derivatives of order α [3][4].  
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The main goal of this article is to introduce and present 

nonstandard technique to numerical study the time 

fractional SIR epidemic model. The constructed method 

preserves the characteristics of the conservation law. The 

rest of the paper is structured as follows: In section 2, we 

introduce the mathematical model for the SIR epidemic 

model with its equilibrium points. Moreover, the non-

standard finite difference method (NSFDM) is introduced in 

section 3. In section 4, the basic mathematical formulas of 

the fractional derivatives are introduced. In section 5, the 

fractional order SIR epidemic model with Grünwald-

Letnikov nonstandard finite difference method (GL-

NSFDM) discretization is given and the obtained results.   

2. Mathematical Model 

Here, the mathematical model for the SIR 
(Susceptible, Infectious, or Recovered) epidemic  is 
introduced , it is related to rubella disease in London, for 
more details see [5] and tables 1 and 2.  This model 
consists of the following three characteristics, given by the 
following nonlinear system of differential equation.  
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(1) 

 

(2) 

 

(3) 

 

Subjected to the following initial conditions: - 

 

Also, the list of all parameters and their interpretation are introduced in table 2. 

The conservation law is clearly satisfied by the successive system of equations, which implies that the population is 
constant when added together. It is possible to normalize the population to one, since it is assumed to be constant [5]: 

 

The above equation must be valid for any numerical method. The reproduction number of system {(1)-(3)} is given as 
follows [5]: 

 

the system {(1)-(3)} has two equilibrium points as follows [5]: 

•  

•  

where 

 

3. NSFDM 

In this section, we introduce several comments that are related to the NSFDM, first proposed by Mickens [6]. The main 
idea behind the construction of most of the NSFDM schemes is to obtain unconditional stability and positivity in the 
variables representing the subpopulations. The first motivation, unconditional stability, is important since large time step 
sizes can be used, saving computational cost when integrating over long time periods. The second motivation is important 
because variables representing subpopulations must never have negative values  [7]. To be designated as an NSFD, a 
method must meet at least one of the following criteria [8] [9]: 

• In the first-order discrete derivatives, the step-size in the denominator is not traditional and uses a nonnegative 

function , such that: 

 

• A nonlocal approximation is used. 

 

4. Basic fractional preliminaries 

We recall several important definitions of the fractional calculus used throughout the remaining sections of this paper. 

• Let  be a real nonnegative number. Then  the Riemann-Liouville fractional-order integral operator of order   

defined on  as follows [10] [11]:  

       (4) 

 

• Let  and . The Riemann-Liouville fractional-order differential operator of order   is defined by [12] for 

a  function f: 

        (5) 
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• Let  be a real nonnegative number. For a positive integer m such that  

 the Riemann-Liouville fractional-order differential operator of a function f of order  is defined by [12]: 

        (6) 

 

Where  is the gamma function. 

Now, to apply Mickens scheme, we have chosen this Grünwald−Letnikov fractional derivative approximation  as follows, for 
more details see [13]: 

            (7) 

 

Where ,  are the Grünwald−Letnikov coefficients define as 

and  

 

Proposition 1 , [11] : 

Given non negative initial conditions, the solution to (1)-(3)  are bounded for all . Furthermore, the closed 

set , attracts of (1)-(3) for any initial condition in . 

 

Table 1:   All variables of system {(1)-(3)} and their definitions. 

Variable Definition 

 Susceptible individuals. 

 Infective individuals. 

 Recovered individuals. 

 
The total population. 

 

 

 

Table 2:  All parameters in the system {(1)-(3)} and their interpretation. 

Parameter Interpretation 

 The transmission rate. 

 The death rate and it is assumed equal to birth rate. 

 The recovery rate. 

 The inhibitory rate. 

 

5. Fractional order SIR epidemic model 

Herein, we consider the SIR model (1-3) using the fractional order derivative. This model consists of three nonlinear 
differential equations. We generalized the order of the equations to the fractional order . Also, when  the fractional 

order system reduces to classical one. The SIR-modified model with GL fractional order derivative represented as follows: 
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                (8) 

              (9) 

                              (10) 

 

GL-NSFDM 

Applying Mickens’ scheme by replacing the step size by a function  and using the Grünwald–Letnikov 

discretization method [11], yields the following equations: 

 

          (11) 

       (12) 

                           (13) 

 

where , then,  use the nonlocal approximations for the nonlinear terms and , we 

obtain: 

 

                                  (14) 

                               (15) 

                                      (16) 

 

6. Numerical results 

To clarify the results of the method used to solve the presented model, we will study the model at various time steps 
and show a comparison between the standard finite difference method and the nonstandard finite difference method. 

With the initial conditions and the parameters 

 

 
 

Table 3:  

Result obtained by SFDM and NSFDM for  with 

different time step size.  

The epidemic model (1)-(3) has a disease-free equilibrium point for  and an endemic equilibrium point for . 

we can conclude that NSFDM is unconditionally converge for large while the SFDM converge only when  is small. 
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h NSFDM SFDM h NSFDM SFDM 

0.01 Convergent Convergent 0.01 Convergent Convergent 

0.1 Convergent Divergent 0.1 Convergent Divergent 

1 Convergent Divergent 1 Convergent Divergent 

10 Convergent Divergent 10 Convergent Divergent 

960 Convergent Divergent 60 Convergent Divergent 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Shows that the NSFD provide good approximations and converge to the endemic equilibrium with different time 

step size  and . 

 

 



                                N.H. Sweilam /Frontiers in Scientific Research and Technology 9 (2024) 72 - 79                                       77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Shows that the NSFD provide good approximations and converge to the endemic equilibrium with different 

time step size  and . 
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Figure 3. Numerical simulation of the all variables of the SIR model at different . 

Shows that the method provides good approximations and converge to the endemic equilibrium. 
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Conclusion 

In this work, we used non-standard finite difference 

methods (NSFD) to study numerically the time fractional 

SIR pandemic model. From the numerical results 

presented in this paper, it can be concluded that the 

fractional order model for SIR is a broadening and more 

appropriate than the integer order model. Furthermore, the 

NSFD scheme being discussed here is more effective in 

solving the fractional order model for the SIR model than 

the SFD scheme. The positivity of the solution is 

preserved, and the stability regions are larger than the SFD 

method. Thus, it is possible to conclude that the NSFD 

method retains the characteristics of the SIR epidemic 

model. 

References 

[1] B. M. Arenasa, A.J.; Gonzlez-Parrab, G.; Chen-Charpentier, 
“An Accurate Nonstandard Scheme of Predictor-Corrector Type 
for a SIR Epidemic Model yp p Abraham J. Arenasa,” Tech. Rep., 
2009. 

[2] K. S. Miller and B. Ross, An introduction to the fractional 
calculus and fractional differential equations, 1st ed. Wiley-
Interscience, 1993. 

[3] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, 
Fractional calculus: models and numerical methods, vol. 3. World 
Scientific, 2012. 

[4] K. M. Owolabi and A. Atangana, Numerical methods for 
fractional differentiation, vol. 54. Springer, 2019. 

[5] M. Mehdizadeh Khalsaraei, A. Shokri, S. Noeiaghdam, and 
M. Molayi, “Nonstandard finite difference schemes for an SIR 
epidemic model,” Mathematics, vol. 9, no. 23, p. 3082, 2021. 

[6] N. H. Sweilam, K. R. Khater, Z. M. Asker, and W. A. Kareem, 
“A Fourth-Order Compact Finite Difference Scheme for Solving 
the Time Fractional Carbon Nanotubes Model,” Sci. World J., vol. 
2022, 2022. 

[7] A. J. Arenas, G. González-Parra, and B. M. Chen-
Charpentier, “A nonstandard numerical scheme of predictor–
corrector type for epidemic models,” Comput. Math. with Appl., 
vol. 59, no. 12, pp. 3740–3749, 2010. 

[8] G. G.-P. G. G. Parrab and B. M. Chen-Charpentier, “An 
Accurate Nonstandard Scheme of Predictor-Corrector Type for a 
SIR Epidemic Model yp p Abraham J. Arenasa”. 

[9] R. E. Mickens, Nonstandard finite difference models of 
differential equations. world scientific, 1994. 

[10] A. M. Nagy and N. H. Sweilam, “An efficient method for 
solving fractional Hodgkin–Huxley model,” Phys. Lett. A, vol. 378, 
no. 30–31, pp. 1980–1984, 2014. 

[11] N. H. Sweilam and S. M. Al-Mekhlafi, “Comparative study for 

multi-strain tuberculosis (TB) model of fractional order,” J. Appl. 

Math. Inf. Sci., vol. 10, no. 4, pp. 1403–1413, 2016. 

[12] I. M. Batiha, S. Alshorm, I. H. Jebril, and M. A. Hammad, “A 

brief review about fractional calculus,” Int. J. Open Probl. Compt. 

Math, vol. 15, no. 4, 2022. 

[13] M. M. Meerschaert and C. Tadjeran, “Finite difference 

approximations for fractional advection–dispersion flow 

equations,” J. Comput. Appl. Math., vol. 172, no. 1, pp. 65–77, 

2004. 

 

 

 


