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The dynamical rotatory motion of a rigid, symmetrical body about a dynamically 
symmetric axis is addressed in this study. It is considered that this body has a single-
rotor and a filled spherical hollow with highly viscous fluid exhibits spherical motions 
around its center of mass under the influence of one component of a gyrostatic moment 
vector. The controlling system of motion is obtained, stationary movements are 
identified, and analyses of their stabilities are performed. The numerical method of 
Runge-Kutta from fourth-order (RK-4) is used to calculate the numerical results of this 
system and they are displayed graphically. Based on the feedback principle, numerous 
controls that stabilize both stable and unstable stationary motions of the body to 
asymptotically stable have been identified. The astonishing applications in the 
industries of gyroscopes and submarines are where this work's significance lies.. 

 

1. Introduction  

Several studies have focused on the spinning motion of 
a rigid body (RB) about a given point, e.g. [1-13]. The 
authors considered that the body is subjected to unsettling 
torques of different types, such as gravitational, 
electromagnetic, aerodynamic, etc. The study of this 
problem has received widespread praise for its excellent 
applications in a variety of sectors that utilize gyroscopic 
techniques. 

When the body’s motion is addressed in relation to its 
center of mass besides the pressure’s observation and 
moments of resistive forces, the rapid motion of an 
asymmetrical spacecraft is examined in [6]. The averaging 
system for the Euler-Poisson's equations is achieved and 
examined. A closer problem was examined in [7], 
specifically for the scenario of a subject asymmetrical 
satellite to gravitational action, which is supposed to be a 
function of angular velocity. The authors addressed the 
issue of assessing the average duration of a dynamic 
system under low perturbation that is in a stable region of 
phase variables [8]. 

In [9] and [10], the motion of a gyrostat which is 
considered to be symmetric is studied, where the body 
rotates initially with a high speed about the axis of dynamic 
symmetry.  
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In light of the averaging method (AM) [11], the desired 
solutions are obtained in [12] for an electromagnetic 
gyrostat when the influence of a Newtonian field is 
considered. The controlling system of motion is 
transformed into an averaging one. Several 
transformations are utilized in [13] to obtain the solutions to 
Euler's dynamic equations. However, the generalization of 
this problem is examined in [14] when the action of GM is 
taken into mind. Moreover, some limited cases are 
examined.  

The stability requirements for a symmetric RB rotating 
around a fixed point with an ellipsoid cavity completely 
filled with perfect liquid are investigated in [15].  The 
consistency of a similar issue is investigated in [16-18] for 
the situation of an ideal incompressible fluid flow filled in 
the cavity, whether the motion is smooth or not. In [19], the 
dynamical movement of asymmetric RB link transporting a 
moving mass and experiencing viscous resistance is 
examined. For further information on connected matters, 
see [20-22]. For a few unique circumstances, the motion of 
an object moves freely as an interior mass in a RB is 
examined in [23] and [24], while a combined impact of a 
moving mass and a viscous liquid inside a cavity for the 
motion of a symmetric body is investigated in [25]. 

In [26], it is examined how quickly an asymmetric 
satellite with a cavity rotates in relation to its center of mass 
when subjected to the combined effects of gravity and light 
pressure, in which a viscous fluid with a low Reynolds 
number fills the cavity. The AM [11, 27] is used to obtain 
the Euler-Poinsot system's averaging system, which is then 
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solved analytically. Whereas [28] examines a coupled 
system consisting of a rigid structure with a hole that is 
totally filled with a viscous liquid. According to [29], the 
space is thought to be filled with a highly viscous fluid. 
Recently, the movement of a body contains a spherical 
cavity completely filled with a viscous liquid is studied in 
[30]. It is supposed that a movable mass connects to this 
cavity in which it is attached in double elastically to a 
located point on the axis of dynamic symmetry and exerting 
a viscous friction for the motion of this body. 

This paper focuses on the dynamical rotational motion 
of a symmetric RB about a dynamically symmetric axis. 
This body is thought to have a single rotor, and it exhibits 
spherical motions around its centre of mass when one 
component of a gyrostatic moment (GM) vector acts on it. 
The motion's governing system is found, stationary motions 
are determined, and investigations of their stabilities are 
carried out. The numerical results of this system are 
computed applying RK-4, and they are graphically 
demonstrated. Many controls that stabilise both stable and 
unstable stationary motions of the body to asymptotically 
stable have been found, all of which are based on the 
feedback principle. The importance of the obtained results 
rests in its astounding applications in the submarine and 
gyroscope industries. 

2. Statement of the problem 

  In present section, a full description of the 
studied problem is presented. To achieve this aim, let us 
consider the rotational movement of RB which is 

considered to be symmetric around its symmetric axis Oz . 

This body contains a carrier which has a filled cavity with 
highly viscous fluid and a single rotor which they are 
symmetric about the same axis of rotation. Therefore, we 

consider that 
1 1 1( , , )A B C  and 2 2 2( , , )A B C  are, 

respectively, the principal inertia moments of the carrier 

and the rotor, where 1 1 1A B C=   and 2 2 2A B C=  . In 

order to attribute the body to fixed and moving coordinate 

axes, we will assume that the fixed one is OXYZ  and the 

moving one is Oxyz , in which it is fixed to the body and 

rotates with it, as explored in Fig. (1). It should be 

emphasised that the body's fixed point O , which is 

situated on an axis of dynamic symmetry for the RB and 
rotor, is considered to coincide with the system's centre of 

mass. The rotation angle   around the axis Oz  provides 

a description of the rotor's revolution about the body and 
the body’s movement is assessed in the consistent with a 

GM 3  about the same axis. 

 

 

Fig. (1): The physical model of the problem 

 

Consequently, the regulating system of motion can be identified as follows [31] 

  

1 2 3 2 3 2 2

2 1 3 1 3 2 1

3 1 2 2

( ) ,

( ) ,

( ) ,

x

y

z

A C B C m

B A C C m

C B A C m

     

   

  

+ − + + =

+ − − + =

+ − + =

                         (1) 

 

  2 3( ) .zC M + =                               (2) 
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Here , ,A B  and C  represent the body’s principal moments of inertia such that 
1 2 ,A A A= + 1 2 ,B B B= +  and 

1 2C C C= +  along the inertia principal axes , ,Ox Oy  and Oz , respectively, and the over dot is the differentiation 

regarding time t . Whereas 
1 2
, ,   and 3  represent the projections of the angular velocity 

1 2 3( , , )T   = on the 

same axes and the notation ( )T
 denotes transposition. Equation (2) indicates the relative rotation of the rotor, where 

zM  represents the torque generated by the carrier and acting on the rotor. We'll also take into account the gyrostat 

motions under the assumption that this torque is zero. Thus Eq. (2) is therefore given as follows 

            3 , = −           (3) 

and it can be integrated to yield 
3 30 0( ) ( ) ,t t   + = +  in which  

30 0 +  is the integration’s constant. 

 

The right side in the previous equation represents the components of the torque forces acting on the carrier from the 
fluid-filled cavity in the direction of the principal axes. Based on the presented model in [32], they are determined as 
follows 

( ),
d L

m L
dt

= − +              (4) 

where L  is the fluid’s moment for spherical cavity which can be defined as follows [32] 

  .L P pE
 

 
= −  = −                                                                                                           (5) 

Here, 
78 /525p a=  is a coefficient that considers the cavity to have the shape of a sphere with radius a ,   

represents the fluid’s kinematic viscosity,   denotes its density,   is the carrier’s angular acceleration, E  is defined 

as the identity matrix. Suppose that the filled fluid in the cavity is highly viscous 
1 1 −  . Therefore, one can rewrite 

Eq. (4) as follows 

  

1 2 3 3 2

2 3 1 1 3

3 1 2 2 1

,m Pg g

    


   


   

+ − 
 

= − = + −
 
 + − 

,                                                                         (6) 

 

In accordance with the works [32,33], let's formulate the vector components of the carrier's angular acceleration 

1 2 3( , , )T   =  according to Eq. (1), leaving out ( , , )T

x y zm m m m=  due to the tiny value of 
1 1 −  : 

  

1

1 2 3 2 2 2 3

1

2 1 3 2 1 1 3

1

3 1 1 2

[( ) ],

[( ) ],

( ) .

A C B C

B A C C

C B A

     

   

 

−

−

−

 − − + +

 − − + −

 − −

                                                                           (7) 

 

Differentiating these equations to obtain  

 

  

1

1 2 3 2 3 2 2 2 2 3

1

2 1 3 1 3 2 1 1 1 3

1

3 1 1 2 1 2

[( )( ) ( ) ],

[( )( ) ( ) ],

( )( ).

A C B C

B A C C

C B A

         

     

  

−

−

−

 − − + + + +

 − − + + + −

 − − +

                                          (8) 

 

The substitution of the previous equations into system (1), inserting the following new variable [33] 

  

1

3 2 3[( ) ] ,s C A C A  −= − + +             (9) 
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and considering the integrating of Eq. (3) to achieve the following system of three equations 

  

1 2 1 1 2 30 0 3

1

2 1 2 1 2 30 0 3

1

2 21
1 2

1

[ ( ) ],
( )

[ ( ) ],
( )

( ).

P
s s C s C

A C A

P
s s C s C

A C A

C P
s s

C A A


    




    




 



+ = + + +
−

− = + + +
−

= −
−

              (10) 

   

These equations represent the dynamical equations for the motion of the examined body, which they are analogous to 
the Euler’s kinematic equations.  

Let's now look at the stationary motions of the body that has a cavity filled with viscous fluid and analyse their stability. 
Through the use of active control and the feedback principle, we shall convert unstable and stable stationary motions 
into asymptotically stable ones. 

3. Stationary motion stability 

 The goal of the current section is to examine the stability of stationary solutions. To accomplish this goal, the 

projections of the angular velocity vector   on the principal inertia axes , ,Ox Oy  and Oz  must be equal constants, 

i.e.,  
1 2 3 0  = = = . Therefore, the substitution of these equalities into (10) and the solutions of the produced 

system, yields the following multiplicities of stationary body’s motion 

  
1 2

1 2

0, ,

, , 0.

s u const

a const b const s

 

 

= = = =

= = = = =
 (11) 

A closer look at the first multiplicity in Eq. (11) and the presence of Eq. (3) makes it clear that there is a manifold of 
carrier rotation and the body’s rotor around the dynamic symmetry axis, where the angular velocities are considered to 

be arbitrary by means of the modulus and the sign. It is determined in relation to the starting values 
30  and 0  of  

3  and  . The second multiplicity in Eq. (11) depicts the body’s rotations with the constancy of angular velocities 

besides the components 
1 ,a const = =  

2 ,b const = =  and 
3 30 const = = . The rotor revolves in this scenario 

with a constant angular velocity 
0 30 3 2[( ) ]A C C  = = − − . 

Since the second multiplicity was studied in [34], we are going to investigate the stability of the first ones. Therefore, let 

us inserting the deviations 1 2 3( , , )Tx x x x=  in view of the below formulas 

  

1 1

2 2

3

,

,

,

x

x

s u x





=

=

= +

                                                                                                                                   (12)  

one formulates the perturbed equations of the corresponding motion of a body’s single-rotor and the equations of first 
approximation as follows 

  

1 1 2

2 1 2

3

,

,

0,

x Mx ux

x ux Mx

x

= −

= +

=

 (13) 

where  

  
2

1 2 30 0 3

1

[ ( ) ]
( )

P
M C u C u u

A C A


 


= + + +

−
. (14) 

We examine the following real components of the roots by solving the characteristic equation of system (13) 

 

   
1 2 30, Re( ) Re( ) .M  = = =  (15) 
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According to Lyapunov's theorem on asymptotic stability, if 0M  , then it is impossible to draw any conclusions 

regarding the stability or instability of the corresponding stationary movements by the first approximation [35] due to the 

existence of 1 0 = .Other tools for stability theory should be used to examine such motions. The motions become 

unstable if M  is greater than 0 , i.e. for the case 0M  . Keeping in mind that, in (9), the equality u  defines the 

constant 
1

30 2 0 3[( ) ]u C A C A  −= − + + . It is clear from Eq. (14) that the sign of M  is estimated by the sign of 

starting values 
30  and 0 , and the sign of the body's inertia moments and its.  

4. Stability of the body's stationary motions 

 At various M values, we will address a solution for the problem of stabilizing the initial unstable stationary 
solution of Eq. (11), in which the second solution was examined in [33]. Let's choose the linear procedure to establish 
the control utilizing the feedback concept [35]. Let's determine the multiplicity of values for the elements of the matrix 

B  and apply the linear control deviation u Bx=  to stabilise both stable and unstable stationary movements to 

asymptotic stability. 

Let us consider the choice two conditions for the matrix’s structure B . First, we shall begin by taking the greatest 
number of zero components to facilitate control. Second, matrix B needs to satisfy the requirements of fully 

autonomous linear systems [35]. Therefore, we select B  as follows 

  

11

21

33

0 0

0 0

0 0

b

B b

b

 
 

=
 
  

. (16) 

The first approximation of equations that correspond to equations (15) takes the form: 

  

1 11 1 2

2 21 1 2

3 33 3

( ) ,

( ) ,

.

x M b x ux

x u b x Mx

x b x

= + −

= + +

=

 (17) 

Based on the principle of decomposition [35], equations (17) can be divided into two subsystems, in which they can be 
individually merged in its independently own subspace of each other. First, one can examine the third equation in the 

system (17), in which 33b = is the root of characteristic equation.  It must be noted that when 33 0b  , the 

asymmetrically stable case regarding 3x -coordinate is produced. It is sufficient for the real roots of the following 

characteristic equation to be negative for the controlled motion to be asymptotically stable with regard to the other 
variables 

  
2 2 2

11 11 21(2 ) 0M b M u Mb ub − + + + + + = , (18) 

The criteria of Routh-Hurwitz stability can define a domain of allowable values for the control coefficients 
11b  and 

21b  

which permits asymptotic stabilization. Therefore, one obtain the below two inequalities  

   
11

2 2

11 21

2 0,

0.

M b

M F Mb Fb

− − 

+ + + 
 (19) 

The following remarks must be taken into account when we deal with the solutions of (19). First, if 0M   and 

33 0b  , we find that the steady motion of the system (10) is asymptotically stable due to the three negative roots. As a 

result, we are able to assume that 
11 21 0b b= =  (control is only required for the third coordinate). Further system (19) 

will be analysed at 0M  . 

Second, the value of 
1

3 2 3[( ) ] .u C A C A const  −= − + + = , which depend on the different values of the system 

parameter besides the conditions of initial motion. System (19) is equivalent to the following equations 

  

2 2

11
11 210, 2 ,

M u Mb
u b M b

u

+ +
  −  , (20) 
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2

11 11 210, 2 , 0 ,u b M M Mb b=  −  +  , (21) 

  

2 2

11
11 210, 2 ,

M u Mb
u b M b

u

+ +
  − 

−
. (22) 

Equations (20), (21), and (22) illustrate the coefficients of multiple control 11b  and 21b  which solve the issue of 

maintaining the gyrostat's stationary revolutions. 

Keep in mind that, system (21) is inconsistent at 0M  and consequently, it impossible to solve the mentioned 

problem. The opportunity for the most straightforward selection for the components of control matrix B , which 
simplifies the structure of stabilising control, is provided by the straightforward analysis of (20) and (22). For solution of 

system (20) when 0M = , then we can reach to 
11 0b   and 21b u − . In this scenario, we can choose 21 0b = . If 

0M  , then 21 0b =  can be chosen besides satisfaction of the condition 
2 2

11 0M u Mb+ +  . For the solution of 

system (22) at 0M = , it is enough to choose 
11 0b   and 21 0b = . If 0M  , then besides 11 2b M − , the zero 

coefficient 21 0b =  can be selected only with the condition 
2 2

11 0M u Mb+ +  .  

5. Numerical investigation  

 This section's objective is to analysis the graphical representations for the numerical results of the systems of 
equations (1) and (17) in view of the numerical values for various body’s parameters by using the RK-4. Therefore, the 
below data can be considered 

 

2 2 2 2

1 1

30 11

2 1

21 33 3

10 . , 10 . , 2 . , 6 . ,

50, 0.001 , 1000, 5000 , 0.005,

0.003, 0.0005, 0.5, ( 5,10,15) . . ,

A kg m B kg m c kg m c kg m

m J b

b b a kg m s

   

−

= = = =

= = = = =

= = − = =

    (23) 

along with the following initial conditions. 

Curves of Figs. (2), (3), and (4) show the variations for the numerical solutions 1 2, ,   and 
3  for the system of 

equations (1), when 3  equals 
2 15 . .kg m s− , 

2 110 . .kg m s− , and 
2 115 . .kg m s− , respectively. Periodic standing waves 

with some nodes are plotted in these figures. The number of waves increases and the corresponding wavelengths 

decrease with the increase of the values of  3 . In each figure, we conclude that the amplitude for the waves of the 

solution 
3  is less than the amplitudes of the solutions 

2  and 1 . The reason backs to the mathematical formulation 

of equations (1). As a result of this analysis, one says that the behavior of these solutions is stable. 

On the other hand, the numerical results of system (17) are graphed in Figs. (5), (6), and (7) to show the behavior of 

the waves describing 1 2, ,x x  and 3x , respectively. The plotted curves in these figures constitute with the formula of 

system (17). 

 

Fig. (2): Variation of 
1 2( ), ( ),t t   and 3 ( )t  at 

2 1

3 5 . .kg m s−= . 

 

Fig. (3): Variation of 
1 2( ), ( ),t t   and 3 ( )t  at 

2 1

3 10 . .kg m s−= . 
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Fig. (4): Variation of 
1 2( ), ( ),t t   and 3 ( )t  at 

2 1

3 15 . .kg m s−= .                      

 

Fig. (5): Variation of 1( )x t  at
2 1

3( 5,10,15) . .kg m s−= . 

 

 

Fig. (6): Variation of 2 ( )x t  at 
2 1

3( 5,10,15) . .kg m s−= . 

 

Fig. (7): Variation of 
3( )x t  at 

2 1

3( 5,10,15) . .kg m s−= . 

6. Conclusions 

In this article the dynamic rotational motion of a symmetric 
RB around a dynamically symmetric axis has been 
investigated. One component of a GM vector acting on this 
body, which is considered to have a single rotor, causes it 
to move spherically around its center of mass. The 
regulating system of the motion is discovered, stationary 
movements are identified, and investigations on the 
stability of those motions proceed. All of the controls that 
have been discovered to stabilize both stable and unstable 
stationary motions of the body to asymptotically stable are 
based on the feedback principle. The significance of the 
research is found in their amazing applications in the 
gyroscope and submarine industries. 

References 

[1] F. L. Chernous’ko, On the motion of a satellite about its centre 
of mass under the action of gravitational torques, J. Appl. Math. 
Mech, 27(3), 208–722 (1963). 

[2] F. L. Chernous’ko, Motion of a rigid body with cavities filled 
with viscous liquid at small Reynolds numbers, Zh. Vychisl. Mat. 
Fiz, 5(6), 1049–1070 (1965).  

[3] V. V. Beletskii, A. V. Grushevskii, The evolution of the 
rotational motion of a satellite under the action of a dissipative 
aerodynamics moment, J. Appl. Math. Mech, 58(1), 11–19 (1992).  

[4] L. D. Akulenko, D. D. Leshchenko, F. L. Chernous’ko, The 
rapid motion of a heavy rigid body about a fixed point in a 
dragging medium, Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela 3, 
5–13 (1982).  

[5] EYu. Kuznetsova, V. V. Sazonov, SYu. Chebukov, Evolution of 
the satellite rapid rotation under the action of gravitational and 
aerodynamic torques, Mech. Solids, 35(2), 1–10 (2000).  

[6] D. D. Leshchenko, A. L. Rachinskaya, Motion of a satellite 
relative to the centre of mass under the action of light pressure 
torque in a resistive medium, Visn. Odes. Derzh. Univ. Ser. Fiz.-
Mat. Nauk, 12(7), 85–98 (2007). 

[7] L. D. Akulenko, D. D. Leshchenko, A. L. Rachinskaya, 
Evolution of the satellite fast rotation due to the gravitational 
torque in a dragging medium, Mech. Solids, 43(2), 173–184 
(2008). 



                                I. M. Abady et al /Frontiers in Scientific Research and Technology 8 (2024) 15 – 22                                                 22 

 

[8] L. D. Akulenko, A. S. Kovaleva, Estimation of time perturbed 
Lagrangian system stays in an assigned region, J. Appl. Math. 
Mech, 73(2), 115–123 (2009). 

[9] T. S. Amer, On the rotational motion of a gyrostat about a fixed 
point with mass distribution, Nonlinear Dyn, 54, 189–198 (2008). 

[10] T. S. Amer, The rotational motion of the electromagnetic 
symmetric rigid body, Appl. Math. Inf. Sci, 10(4), 1453–1464 
(2016). 

[11] A. H. Nayfeh, Perturbations Methods, WILEY, Weinheim, 
(2004).  

[12] A. I. Ismail, T. S. Amer, S. A. El Banna, M. A. El-Ameen, 
Electromagnetic gyroscopic motion, J. Appl. Math, 2012, 1–14 
(2012). 

[13] D. E. Panayotounakos, P. S. Theocaris, On the decoupling 
and the solutions of the Euler dynamic equations governing the 
motion of a gyro, ZAMM, 70(11), 489–500 (1990). 

[14] T. S. Amer, I. M. Abady, On the solutions of the Euler’s 
dynamic equations for the motion of a rigid body,    J. Aero. Eng, 
30(4), 04017021 (2017). 

[15] A.V. Karapetyan, The stability of regular precession of a 
symmetric rigid body with an ellipsoidal cavity, Vestnik Mosk. 
Gos. Univ., Ser. 1: Mathematika Mehkanika 6, 122–125 (1972) 

[16] A. P. Markeyev, The stability of rotation of a top with a cavity 
filled with liquid, Izv. Akad. Kauk SSSR. MTT 3, 19–26 (1985) 

[17] A. V. Karapetyan, O. V. Prokonina, The stability of permanent 
rotations of a top with a cavity filled with liquid on a plane with 
friction, PMM, 64(1), 85–91 (2000) 

[18] T. V. Rudenko, The stability of the steady motion of a 
gyrostat with a liquid in a cavity, J. Appl.Math. Mech, 66(2), 171–
178 (2002) 

[19] D. D. Leshchenko, Motion of a rigid body with movable point 
mass, Izv. AN SSSR,Mekh. Tverd. Tela, 11(3), 37–40 (1976) 

[20] L. D. Akulenko, Yu. R. Roshchin, Response optimal braking 
of the rotation of a solid by controls limited by an ellipsoid, Izv. AN 
SSSR, MTT 1 (1977) 

[21] L. D. Akulenko, Yu. R. Roshchin, Optimal control of the 
rotation of a solid by a low thrust pivoted motor, Izv. AN SSSR, 
MTT, 5 (1977) 

[22] B. A. Smol’nikov, Generalization of Euler case of a solid, 
PMM, 31(4), 735–736 (1967) 

[23] F. L. Chernous’ko, Motion of a rigid body with moving internal 
masses, Izv. AN. SSSR, MTT 4, 33–44 (1973) 

[24] L. D. Akulenko, D. D. Leshchenko, Some problems on the 
motion of a rigid body with a movable mass, Izv. Akad. Nauk 
SSSR, Mekh. Tverd. Tela, 13 (5), 29–34 (1978) 

[25] D. D. Leshchenko, N. S. Sallam, Some problems on the 
motion of a rigid body with internal degrees of freedom, Int. Appl. 
Mech, 28(8), 524–528 (1992) 

[26] L. D. Akulenko, Ya. S. Zinkevich, D. D. Leshchenko, A. L. 
Rachinskaya, (2011) Rapid rotations of a satellite with a cavity 
filled with viscous fluid under the action of moments of gravity and 
light pressure forces, Cosmic Res, 49(5), 440–451 (2011) 

[27] A. A. Galal, T. S. Amer, H. El-Kafly, W. S. Amer, The 
asymptotic solutions of the governing system of a charged 
symmetric body under the influence of external torques, Results 
Phys, 18, 103160 (2020) 

[28] K. Disser, G. P. Galdi, G. Mazzone, P. Zunino, Inertial 
motions of a rigid body with a cavity filled with a viscous liquid, 
Arch. Rational Mech. Anal, 221, 487–526 (2016) 

[29] F. L. Chernousko, L. D. Akulenko, D. D. Leshchenko, 
Evolution of motions of a rigid body about its center ofmass, 
Springer, AG (2017) 

[30] W. S. Amer, A. M. Farag, I. M. Abady, Asymptotic analysis 
and numerical solutions for the rigid body containing a viscous 
liquid in cavity in the presence of gyrostatic moment, Archive of 
Applied Mechanics, 91, 3889–3902 (2021) 

[31] S. P. Bezglasnyi, Stabilization of Stationary Motion of a 
Gyrostat with a Cavity Filled with Viscous Fluid, R. Aero, 57(4), 7-
10 (2014).  

[32] F. L. Chernous’ko, Motion of a Rigid Body with Cavities 
Containing a Viscous Fluid, Moscow. Nauka, 1968.  

[33] A. V. Alekseev, Movement of the Satelitte-Gyrostat 
Containing a Cavity with a High-Viscosity Liquid, Izvestiya SNTs 
RAN, 9 (3), 671-676 (2007). 

[34] A. V. Alekseev, S. P. Bezglasnyi, and V. S. Kroasnikov, 
Building Stabilizing Control for Stationary Motions of a Gyrostat 
with a Cavity with Viscous Fluid, Izvestiya SNTs RAN, 15 (6), 
563-567(2013).   

[35] V. V. Aleksandrov, V. G. Boltyanskii, S. S. Lemak, N. A. 
Parusnikov, and V. M. Tikhomirov, Optimal Control of Motions, 
Moscow, Fizmatlit, 2005. 

 


