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Groundwater is an essential resource for rural households and the public in El Dir, 
Sohag Governorate, South Egypt. Groundwater is used for drinking and irrigation in the 
larger settlements. The Pleistocene aquifer is considered the main groundwater source 
in the El Dir area due to suitable groundwater salinity.  Geochemistry has been used to 
examine processes impacting groundwater quality and to investigate the recharge 
source(s), the extent of water-rock interaction, and the mechanisms of mixing 
processes. The main sources of groundwater recharge are the seepage from the River 
Nile and the surface water drainage system. According to the geologic environment, 
major ions (Na+, K+, Ca2+, Mg2+, HCO3

-, Cl-, SO4
2-) and nitrogen compounds (NH4

+, NO3
-

) the shallow groundwater quality in the El Dir area has been deteriorated due to the 
regional extent of water-rock interaction, anthropological activity, and mixing processes. 
The majority of groundwater salinization is caused by silicate weathering, and the 
components, including Na+, K+, Ca2+, and Mg2+ are mostly obtained from groundwater 
and aquifer lithology interacting (geogenic effect). Anthropological activities involve 
human activity, agricultural practices, and extensive uses of fertilizers. The mixing with 
wastewater infiltration leads to elevated nitrogen compounds in the Pleistocene aquifer. 
The groundwater in the El Dir area is suitable for agricultural uses; however, water 
treatment is crucial for human drinking to remove the impact of contamination with 
wastewater.  

 

Introduction  

In dry and semi-dry areas prone to water shortages, 
sustainable water management involves a greater 
understanding of the dynamic behavior of natural and 
anthropogenic pollutants, which influence the suitability of 
water quality and are considered a deciding factor for 
sustainable growth. In Egypt, Water is mostly obtained 
from the Nile River, which provides 94% of all renewable 
water resources (El-Din, 2013). Egypt faces water 
shortages, with 97 million people and 570 m3/year/capita 
of renewable water resources in 2018 (CAPMAS, 2019); 
this is less than the 1000 m3/capita/year threshold for 
water scarcity (Gleick, 2002). The local geological setting 
has a natural impact on the groundwater hydrochemistry 
and pollution levels (Banat and Howari, 2002; Banat et al., 
2005; Edmunds and Shad, 2008; Embaby et al., 2016; 
Embaby and Ali, 2021, Othman et al., 2022; Abdel-Haleem 
et al., 2022) and the aquifer's lithological component 
(Howari et al., 2005; Howari, 2016; Embaby and Redwan, 
2019; Mosaad et al., 2022). 
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Besides anthropogenic considerations include 

agriculture (Wongsasuluk et al., 2014), industrial and 
disposal activities (Dong et al., 2015). Natural variables 
such as aquifer lithology, geological structure, recharge of 
water chemistry, geochemical reactions inside the aquifer, 
and the rate of groundwater movement from recharge to 
discharge areas along its passage all influence 
groundwater chemistry (Appelo and Postma, 2005).  

This research provides approaches that could be 
useful to assess the main hydrogeochemical 
characteristics and hydro-chemical processes.  As for 
determining minor and trace elements, heavy metals, and 
groundwater quality for varied objectives and determining 
the suitability rely on major or minor and trace elements are 
not covered in the current study.  
2. Background 

2.1. Study area and climate 

Sohag Governorate, with a total size of around 6.546 k
m2, is located in the center of the Nile Valley, 
roughly 125 km long. Geographically, the study area is 
located 2 kilometers from the western Nile bank and 1 
kilometer from the western desert borders. (Fig. 1a and 
1b). Broad and flat terrains are the geomorphic 
characteristics of the settlements under study. 
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Sohag is situated in an area of North Africa that is dry 
and known for having cold winters and hot summers. The 
daily temperature is variable, and the yearly rainfall is only 
1.18 mm (Allmetsat, 2021). Between December and May, 
the average monthly evaporation ranges between 96.1 and 
325.5 mm (Egyptian Meteorological Authority, 2000). The 
region has a serious shortage of moisture influx and arid 
conditions, and the evaporation rate exceeds that of rainfall 
(Abu El-Magd, 2008). 

2.2. Geological Setting  

Many authors discussed the field of study, for example, 
Abu El-Magd et al., 2020, Omer 1996, Mostafa 1979, 
Omara et al. 1973, Othman et al., 2022; Abdel-Haleem et 
al., 2022. Stratigraphically, in this area of interest, the Nile 
Valley sediments consist mainly of an Oligiocene-Pliocene-

Quaternary Lower Eocene calystone series (Table 1). The 
lower Eocene sequence consists of Thebes Type, a thick 
calcareous with chert and nodules (Abotalib and Mohamed, 
2013). The Thebes was identified as the main unit of 
limestone building in southern Egypt (Said, 1990). 

Bounding limestone is known as the base of Thebes 
and the top of the Drunka group (Mostafa, 1979; Ahmed, 
1980; Said, 1993; Omer and Issawi, 1998; Youssef, 2008). 
The base is the foundation for the two rock groups. The 
Thebes Formation is a local distribution with laminated 
calcareous columns with flint strips with a thickness of 30 
m. The Thebes Formation is to the west of the village of El-
Kawamil, where the Drunka Formation is formed 
accordingly.  

 

 

Fig.1a: Location and geological map of the study area Modefied after (CONOCO 1987 & Redwan and abdel Moneim, 

2016), showing the location of wastewater treatment plant at Sohag (El-Dir). 
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Fig.1b: El Dir Location map and well’s location of study area 

 

Table 1: Stratigraphic sequence of sediments in Sohag area (Abu El-Magd et al., 2020). 

Age  Formation  Description 

Pleistocene 

Dandara 
The fine sand-silt intercalations and accumulated at 
low-energy conditions (Omar and Isaac, 1998). 

Abbassia 
The conglomerate consists of igneous rock pebbles, quartzite, and 
siliceous sandstones, is 2 - 20 cm in diameter, and is all set in a 
reddish-brown matrix (Said, 1981). 

Qena 
Quartozose sands and gravels without fragments from igneous and 
metamorphic rocks (Said, 1981). 

Late Pliocene/Early 
Pleistocene 

Armant / 
Issawia 

The carbonate facies in the middle zones and clastic facies in the 
lake margins (Said, 1971). 

Early Pliocene Madamud 
Brown and gray bedded clays intercalated with thin beds of silt and 
fine sand lenses, and fluvial sediments made up of sand, silt, and 
mud intercalations (Mahran, 1993). 

Oligiocene 
Katkut 

Formation 
Coarse clastic (Issawi, 2005) 

Oligio-Miocene 
Abu Retag 
Formation 

Reddish-brown, coarse sediments mainly crop up on the lower hills 
of the western Eocene calcareous scars (Mahran et al., 2013). 
 

Early Eocene 
Drunka 

Formation 
Snow-white color and massive bedding (Ahmed, 1980; Mostafa, 
1979). 

Early Eocene 
Thebes 

Formation 

Laminated limestone with flint bands with 30-meter thickness 
(Mostafa, 1979; Ahmed, 1980; Said, 1993; Omer and Issawi 1998; 
Youssef, 2008). 
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2.3. Hydrogeological setting 

Qena Sands represents the aquifer is situated west of 
the old agricultural regions. The waste disposal site is 
located as shown in (Fig.2). The specific storage of the 
aquifer is 4.37 × 10−2, and the horizontal hydraulic 
conductivity is 20.46 m/day (Abdel Moneim, 1999). The 
subsurface sediments' high vertical hydraulic conductivity 
contributes to groundwater pollution (El-Haddad and El-
Shater, 1988, Youssef et al., 2011) due to hydrulic 
connections between the surface water bodies, including 
the oxidation bonds. The water-bearing layers range in 

thickness from 20 to 80 meters and generally grow 
eastward towards the Nile’s ancient agricultural areas 
(Redwan and Abdel Moneim, 2016). The water depth 
varies between 5 and 25 meters (Abdel Moneim 1999). 
The aquifer is recharged through extra irrigation water 
seepage from neighboring ancient rural areas and post-
Eocene accumulated water. Moreover, the groundwater 
flows in the northwestern direction due to irrigation land 
recharge and ground surface topography (Redwan and 
Abdel Moneim, 2016). 

 

Fig. 2: General Hydrogeological cross section of Sohag area after (RIGW, 1993). 

3. Methodology 

3.1. Sampling procedures 

The sampling techniques are implemented during 
sample collection and are established by the quantity of 
foreign academics (Claasen 1982; Barcelona et al. 1985). 
Grab, independent, discreteindependent, and discrete 
samples were taken from each physical site to get 
groundwater samples. The samples were physically 
collected during the field trip from a pump's flowing 
discharge line. Polyethelene 500 ml vials were used to 
collect the groundwater samples. They were stored in an 
icebox and subsequently a refrigerator at 4°C until they 
were transported to the Applied and Environmental 
Geochemistry Laboratory (EAG) at Sohag University and 

the Central Laboratory of Desert Research Center, Cairo, 
to undergo the necessary major, minor, and trace chemical 
analyses. The digital meters (WPA and Cole Parmer 
models) measured pH and electric conductivity (EC).  

Ca2+, K+, and Na+ concentrations were measured using 
a Jenway PFP7 Flame Photometer. The atomic absorption 
spectrophotometer (Perken Elmer 2380) measured the 
contents of iron, magnesium, and manganese. Chloride 
and HCO3

 were titrimetrically quantified (Richards, 1954; 
Jackson, 1973). The spectrophotometry identifies the 
nitrogen components (NH4

+ and NO3
-) and sulfate (Dewis 

and Freitas, 1970; DEWAS, 1980; and APHA, 1985). 
Parameters and different analytical approaches are 
summarized in Table 2.  

 

Table 2: List of Chemical parameters and their test methods 

Parameters Unit Test Methods 
1 pH --- pH meter 
2 Conductivity ms/cm Conductivity meter 
3 Total dissolved Solids mg/L Digital conductivity meter 
4 Chloride mg/L Titration 
5 Calcium mg/L Flame Photometer 
6 Sodium mg/L Flame Photometer 
7 Potassium mg/L Flame Photometer 
8 Magnesium mg/L FAAS 
9 Chloride mg/L Titration 

10 Sulfate mg/L Spectrophotometric 
11 Bicarbonate mg/L Titration 
12 Nitrate -Nitrogen (NO3 — N) mg/L Spectrophotometric 
13 Ammonia-Nitrogen (NH3 — N) mg/L Spectrophotometric 



                                Ashraf Embaby et al /Frontiers in Scientific Research and Technology 7 (2023) 49 - 63                                      53 

 

The quality assurance and quality control (QA/QC) of 
this study were assessed by carefully inspecting field 
blanks, duplicate samples, standards, and reagent blanks, 
as well as by computing each sample's charge balance, 
which must fall within 5% to be authorized by the authors. 

4. Results and Discussion 

4.1. Classification 

The main ion concentrations were recorded on a 
diagram of discrimination proposed by Chadha (1999) in 
the groundwater of the El-Dir region. The diagram shows 
that most groundwater specimens are of the Ca2+ - Mg2+ - 
HCO3

- form, and then the groups Na+-Mg2+-Cl- and Na+-Cl- 
- Na2SO4 are just a few specimens (Fig.3). 

4.2. Major ions chemistry 

Hydro-chemical data of groundwater samples (Table 3). 
The pH varies from 6.7 and 8.6 and pH average is 7.4, 
which reflects slightly alkaline groundwater. The eastern 
portion of the research area is where the lower pH values 
are found, reflecting the proximity of the sampled wells to 
the ocean.  The western portion of the research area's 
higher pH readings might point to places with favored 
recharge. Between 21°C and 30°C, the groundwater's 
temperature varies only slightly. The range of the Total 
Dissolved Solids is 150 to 242 mg/l, with a mean of 875 
mg/l. These data demonstrate the significant variation in 
groundwater mineralization at the research site. 

According to the coefficient of variation (CV), the spatial 
variability of the ions contents is remarkably large (50% CV 
155%).  The values of bicarbonate vary from 102 to 963 

mg/l, chloride from 13 to 981 mg/l, sulfate from 4 to 1142 
mg/l, nitrate from 0.02-32 mg/l, sodium from 12 to 359 mg/l, 
calcium from 22 to 287 mg/l, magnesium from 5 to 159 
mg/l, potassium from 3 to 22 mg/l, and ammonia from 0.04 
to 11.58 mg/l. The relative concentrations of the cations are 
Na+, Ca2+, Mg2+, and K+ and anions are HCO3

-, Cl-, SO4
2-, 

and NO3
-.  

Pairwise relationships between the components were 
discovered using Pearson's correlation matrix (Swan and 
Sandilands, 1995). Correlation analyses between several 
groundwater parameters have been calculated in this work 
and are shown in Table 3. The correlation matrix Table 4. 
An instrument frequently used to determine the relationship 
between two variables is the correlation coefficient (R) 
(Kurumbein and Graybill, 1965; Mrazovac and Vojinovic, 
2011). 

EC and TDS positively correlate positively with Ca2+, 
Mg2+, Na+, Cl−, and SO4

2- (R > 0.80). There is a strong 
positive correlation between Ca2+- Mg2+ (0.9),  Ca2+-Cl− 
(0.9),  Ca2+- SO4

2- (0.69),  Ca2+-Na+ (0.6), Na+ - Cl− (0.87), 
Na+- SO4

2- (0.66),  Mg2+- SO4
2- (0.74),  Mg2+- Cl− (0.56), 

Mg2+- Na+ (0.66), K+-NH4
2- (0.62), and Cl--SO4

2- (0.61) 
demonstrates that the sources of these parameters for the 
majority of the groundwater samples are different. The 
concentrations of these components tend to rise when the 
salinity of the groundwater rises. The ionic concentrations 
rising due to recharge water evaporation, seawater 
intrusion, and interactions between the groundwater and 
geological formations would be predicted to cause 
groundwater salinization.  

 

 

Fig. 3: Plots of the groundwater samples obtained on Chadha's rectangular diagram (1999). 
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Table 3: Summary statistics of groundwater physical and chemical parameters. Ion concentrations and TDS are in 
mg/l. SD: Standard Deviation. CV: Coefficient of Variation 

 TDS pH Ca Mg Na K NH4 Cl SO4 NO3 HCO3 

Maximum 2420.0 8.6 287.0 158.8 359.0 22.0 20.0 981.0 1142.0 32.0 963.0 

Minimum 150.0 6.7 22.6 5.6 12.8 3.0 0.1 13.5 4.0 0.0 102.0 

Mean 875.4 7.4 108.6 50.5 114.8 6.0 2.5 195.3 143.7 1.3 385.2 

Standard Deviation 588.0 0.4 64.5 34.4 94.4 3.4 3.9 237.7 211.6 4.9 194.2 

Coefficient variation 0.7 0.1 0.6 0.7 0.8 0.6 1.5 1.2 1.5 3.6 0.5 

 

Table 4: Correlation matrix between chemical variables. 

  TDS  pH Ca  Mg Na K NH4  Cl  SO4 NO3  HCO3  

TDs 1.00 
-

0.61 
0.83 0.80 0.84 0.18 -0.06 0.81 0.82 0.01 -0.07 

PH  1.00 
-

0.61 
-0.54 -0.51 

-
0.21 

-0.10 
-

0.50 
-

0.34 
0.07 -0.24 

Ca   1.00 0.90 0.60 0.15 -0.08 0.75 0.69 
-

0.11 
0.10 

Mg    1.00 0.48 0.17 -0.07 0.56 0.74 
-

0.10 
0.26 

Na     1.00 
-

0.02 
-0.09 0.87 0.66 0.11 -0.30 

K      1.00 0.62 0.06 0.13 
-

0.09 
0.06 

NH4       1.00 
-

0.03 
-

0.08 
-

0.08 
-0.05 

Cl        1.00 0.61 
-

0.02 
-0.43 

SO4         1.00 0.01 -0.22 
NO3          1.00 -0.01 

HCO3           1.00 

 

Combining the elements with the opposite sign's 
strongest relationships Cl- and Ca2+ (R = 0.9), Cl- and Na+ 
(R = 0.87), and Cl- and Mg2+ (R = 0.56).  

The Mg2+- Cl- and Ca2+- Cl- correlations are very strong, 
indicating that cation exchange can greatly impact 
groundwater composition. The evaporitic salts and 
agricultural activity may have contributed to the positive and 
significant correlations between sodium and sulfate (R = 
0.66). Fertilizers based on potassium sulfate, ammonium 
sulfate, and ammonia sulphosphate can be used to 
supplement these elements (Achour and Bouzelboudjen 
1998; Gouaidia et al. 2011; Ahmed et al., 2015; Eissa et al., 
2019; Embaby and Ali, 2021). Sulfate indicates the 
evaporitic salts' contributions and magnesium have many 
strong and positive relationships (R = 0.74), sulfate and 
calcium (R = 0.69), and sulfate and sodium (R = 0.66) 
(Touhari et al., 2014). The high correlation between SO4

2- 
with Ca2+ (R=0.69), and Mg2+ (R=0.74) is important and 
indicates that the gypsum and Mg-sulfate minerals are 
partly derived by dissolution. While, HCO3

- with Ca2+ 
(R=0.10) and Mg2+ (R=0.26) reflects a poor correlation that 
the only source for such elements is not carbonate rock 
dissolution  (calcite, dolomite). 

4.3. Binary Diagrams 

The processes that formed the groundwater structure 
that have been observed and the sources of the solutes 
may show dissolved species and their connection with 
each other (Singh et al., 2015; Ahmed et al., 2015). Na+ 
produced from silicate weathering reactions typically 
interprets more than one Na+ molar ratio (Meybeck, 1987; 
Zaghlool et al., 2018). Na+/Cl- was often utilized to 
processes involving salinity and saline intrusions in semi-
arid areas (Sami, 1992; Eissa et al., 2018). High levels of 
sodium and chloride in groundwater could be caused by 
the leaching of chloride salts or concentration processes by 
evaporation (Fig. 4).  

The relationship Na+ vs Cl- was frequently used to 
determine the salinity acquisition mechanism. The Na+ vs. 
Cl- plot demonstrates not aligned samples with the line 1:1, 
but have a powerful correlation (R= 0.87) which suggests 
that Na+ and Cl-are not from the same source for the most 
portion. The Na+ and Cl- plot shows that most groundwater 
samples lie above the halite dissolution line. The additional 
Na+ was most likely caused by the cation exchange of clay 
minerals and Ca2+ to adsorb clay minerals and Na+ ions to 
escape later (Magaritz et al., 1981; Reda et al., 2022).  
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Fig. 4: Binary diagrams a) Cl2- vs. Na+; b) Na+ Vs. Ca2+; c) HCO3
2- vs. Ca2+.; d) SO4

2- vs. Ca2+. 

 

The high Na+ and Cl- the dissolution of halite and 
chloride salts may cause levels. Halite dissolution in water 
release Na+ and Cl- concentrations into the solution: NaCl 
→ Na+ + Cl- 

Moreover, the correlation is strong between sodium ion 
and sulfate ion (R=0.66) exhibiting the excess of sodium as 
a result of the dissolving of sodium sulfate minerals (Eq. 1) 
and most specimens lie above 1:1 (Fig.5a). 

Na2HSO4 + H2O → 2 Na+ + SO4
2-               (Eq. 1) 

The negative correlation between pH and SO4
2- (r = -

0.34) reveals that the SO4
2- component may result from 

biochemical reactions. The Na+ and Cl- correlation is strong 
(R=0.87) revealing the ion exchange process as shown in 
(Fig.5a). The relative abundance of K+ in the clay minerals 
is probably considerably greater than Ca2+ or Mg2+ 
concerning the concentrations in groundwater. The high 
correlation between NH4

+ and K+ (R=0.62) may be 
explained due the attenuation of ammonium is mainly due 
to cation exchange and nitrification (biological oxidation) 
procedures in subsoils and groundwater (Buss et al., 
2004). The effects of Ca2+ versus Na+, Ca2+ versus HCO3

- 
plots support these projected exchanges of cation (Fig.5b). 
The relationships and correlation between calcium and 
carbonate are not considerable (R=0.1), revealing that 

calcite may not be the calcium source (Fig.5c). The 
majority of the plotted data reveals the depletion of calcium 
and magnesium. The later ions were connected to cation 
exchange with Na+ and came from the weathering of 
carbonate minerals (Reddy and Kumar, 2010). 

The positive correlation (Fig. 5d) with a coefficient of 
(0.69) between calcium and sulfates indicates all elements 
have the same origin. The points are dispersed over slope 
1:1, this suggests that gypsum and/or anhydrite dissolution 
can be the source of the two ions (Bahir et al., 2018).  

The correlation between calcium and magnesium is str
ong (r=0.90), implying a similar geological formation (Fig. 
5a). The strong correlation between sulfate and sodium, 
Sulfate and magnesium (R=0.66; 0.74) respectively, may 
occur as a result of the weathering of sodium sulfate and 
magnesium sulfate minerals (Fig. 5b and 5c). A large part 
of HCO3

- is prognosticated to be formed due to the 
breakdown of carbonate rocks in the aquifer via the CO2- 
enrichment cycle (Appelo and Postma 1996). The 
relationships and correlation between Magnesium and 
carbonate are not considerable (R=0.26) concluded that 
calcite may not be the calcium source (Fig. 5d). 
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Fig. 5: Binary diagrams a) Mg2+ vs. Ca2+; b) SO4
2- vs. Na+; c) SO4

2- vs. Mg2 d) HCO3
2- vs. Mg2+. 

 

4.4. Hydrogeochemical processes 

4.4.1. Ion exchange 

Important geochemical processes called ion exchange 
reactions produce Ion concentrations in groundwater. It 
might be located by examining the interaction between Na+ 
and Cl- ions. Ion exchange reactions are indicated by an 
increase or decrease in Na+ around the Cl- ion (Rajmohan 
and Elango 2004, Salama 1993), where Na+ is discharged 
into the groundwater but Ca2+ is maintained in the aquifer 
material. The enriched Na+ concentrations to Cl- in the 
examined samples (Fig. 6) provide proof of an ion 
exchange reaction, The Na+ and Cl- correlation is strong 
(R=0.87), and all points above Line 1:1, revealing the ion 
exchange process. Na+/Cl- molar ratios in groundwater 
samples varied from 0.92 to 23.75. 

Na+/Cl- molar ratio is greater than or equal to 1, which 
reveals silicate weathering has taken the position of the ion 
exchange process as the primary mechanism. 

Calculations of the Chloro-Alkaline Index (CAI) can 
also be used to achieve the process of ion exchange 
(Schoeller, 1977);  

CAI = [C1 (Na+ + K+)/C1-]. In meq/l, all values are 
expressed. 

When the aquifer material contains Na+ and K+, a 
negative CAI index value suggests ion exchange of Ca2+ or 

Mg2+ in groundwater. The CAI values range from -0.30.83 
to 0.06; most samples have a negative value.  

4.4.2. Evaporation 

Gibbs diagrams can support this assertion, which plot 
TDS against Cl-/(Cl-+HCO3

-) to reveal the natural 
mechanisms (Gibbs, 1970; ). Rainfall, rock weathering, 
evaporation, and participation dominance are natural 
processes governing groundwater chemistry. The rock-
water interactions are prevalent and greatly impact 
regulating groundwater chemistry. The whole samples 
plotted in the zone of rock-water interaction reveal, 
according to Gibbs diagrams (Fig. 7). Gibbs diagrams 
(Gibbs, 1970) reflect that the interactions between rocks 
and water are common and greatly impact how 
groundwater chemistry is regulated. 

4.4.3. Silicate weathering process 

Ion ratios aid in defining the water origin and detecting 
the hydrochemical processes involving pollution, mixing, 
and ion exchange. Most samples have rCa2+/rMg2+ ratios 
greater than one, indicating evaporate dissolution as 
gypsum and anhydrite or ion exchange. However, less than 
one values signify magnesium-rich minerals' dissolution, 
including amphiboles and pyroxenes (Ahmed, 2015).  
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Fig. 6: Dominance of ion-exchange process in the study areas as indicated by Na+-Cl- plot. 

 

 

Fig. 7: Gibbs diagram showing the dominant geochemical processes in groundwater of the study area, TDS vs. Cl-/(Cl-

+HCO3
-). 
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The Na+/Ca2+ ratio in most samples suggests an 
excess of Na+ because sewage effluent pollutes 
groundwater and fertilizers increase soil salinity. Na+/Ca2+ 
and Mg2+/Ca2+ diagrams distinguish between silicate, 
limestone, and dolomite dissolution (Fig. 8). Groundwater 
features are mostly derived from silicate weathering, as 
seen by the groundwater samples' tendency to cluster 
around the silicate pole. Groundwater and aquifer lithology 
interacting (geogenic effect) is the main source of key 
elements, such as (Na+, K+, Ca2+, and Mg2+). It involves 
agricultural practices, anthropogenic activities, and the 
weathering of silicate minerals through infiltrating 
wastewater in the Pleistocene aquifer. The interaction of 

aquifer lithology and groundwater is the main source of key 
elements. It includes agricultural practices, anthropogenic 
activities, and the weathering of silicate minerals through 
infiltrating wastewater in the Pleistocene aquifer (Gedamy, 
2015). Na+, Mg2+, and K+ ions are added to the 
groundwater by the geochemical processes at a higher rate 
than Ca2+ (Stallard and Edmond 1983; Sarin et al. 1989). 
Na+/Ca2+ ratio is varied from 0.13 to 6.8 (average: 1.05) 
and Ca2+/Mg2+ from 0.91 to 3.34 (average: 1.4). This result 
confirms that Na+ ions predominate over Ca2+ ions in the 
groundwater samples. Ca2+ + Mg2+ were less important to 
groundwater chemistry than Na+ + K+. 

 

 

2+/Ca+and Na 2+/Ca2+diagram of Mg :8 Fig. 

 

All of the groundwater samples deviate from the 1:1 
halite dissolving line, as seen by Cl- levels plotted against 
Na+ (Fig. 7). Domestic wastewaters and agricultural 
activities commonly have Na+/CI- ratios (> 1.0), varied from 
0.92 to 23.75, which is a classic sign of anthropogenic 
origin (Jones et al., 1999; Vengosh et al., 1999). Na+/CI- 
ratios >1.0 in all groundwater samples may result from 
anthropogenic contamination. 

The Ca2+/Mg2+ ratio was used to identify the sources of 
Ca2+ and Mg2+ ions in groundwater, (Maya and Loucks, 
1995). Ca2+/Mg2+ ratio is equal to 1, it indicates that 
dolomite is dissolving, and when it is greater than 2, it 
indicates that silicate minerals are releasing Ca2+ and Mg2+ 
ions into groundwater (Katz et al., 1998). Groundwater 

ranged from 0.91 to 3.34 (average=1.4), with most samples 
above 1 and below 2 indicating calcium ion precipitation as 
carbonates that result in a decrease in Ca2+ values or an 
ion exchange process, while some samples show ratios 
greater than 1, a magnesium ion increase caused by an ion 
exchange with sodium ions. 

4.4.5. Carbonate/silicate weathering 

The (Ca2++Mg2+) and (HCO3
-) diagram distinguishes 

the leaching of calcite, dolomite, and silicate minerals 
(SenthilKumar and Elango, 2013). Most groundwater lies 
near and below the aquiline 1:1 indicates that Nile Valley's 
excess bicarbonate caused by bicarbonate seeping from 
the margins of the desert as well as recharging from the 
Nile River and canals (Fig. 9). The (Ca2++Mg2+) against 
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(HCO3
- + SO4

2-) plot reflects that most groundwater 
samples are above and below the aquiline 1:1. The results 
reveal the increase of (SO4

2- + HCO3
-) over (Ca2+ + Mg2+) 

in most of the samples; moreover, samples above the 
aquiline 1:1 revealed that calcite is not the source of 
calcium and magnesium (Fig. 10).  

 

 

Fig. 9: Plot of [Ca2++Mg2+] vs. [HCO3
-+SO4

2-]. 

 

Fig. 10: Plot of [Ca2++Mg2+] vs. [HCO3
-] 
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4.4.6. Anthropogenic activity 

Nitrate is a major environmentally responsible 
pollutant, commonly produced from agricultural fertilizers, 
air pollution, human and animal wastes, bio-burden,bio-
burden, and synthetic N (Jeong, 2001; Xiao and Liu, 2002). 
Ammonium (NH4

-) and nitrate (NO3
-) are the two main 

pollutants in both surface water and groundwater (Böhlke 
et al.,2006; Brauns et al., 2016; Zhang et al., 2014). 
Leaking sewage pipes, chemical combination spills under 
industrial operations, and fertilizer leaching are some of the 
causes (Di Lorenzo et al., 2012; Best et al., 2015; Yang et 
al., 2016; Roehrdanz et al., 2017; Caschetto et al., 2018). 
Possibly from wastewater treatment facilities, septic tanks, 
and sewage systems, leaks are the main contributors to 
decreased groundwater quality, which mostly creates 
nitrogen compounds as pollutants (Ahmed and Ali, 2011). 
Two nitrogen species, nitrates and ammonia, were 
detected. The NO3

- level have an average (1.35), vary 
between 0.02 to 32 mg/L, indicating that home and 
industrial wastewater has been contaminated by nitrogen 
fertilizers, nitrite oxidation, and nitrification of ammonia 
nitrogen (El Morhit, 2013 and Taouil, 2013). The overuse of 
nitrogen fertilizers during agriculture and anthropogenic 
activities mainly causes the relatively high NH4

+ content in 
groundwater (Gedamy, 2015). Low NH4

+ levels in the 
groundwater will be caused by the substantial oxidation of 
NH4

+ to NO3
- (Gedamy, 2015). Ammonium varies from 0.04 

and 11.58 mg/L, with 1.30 as a mean value. Because of 
the decomposing organic matter in the groundwater may 
have occurred naturally or as a result of artificial sources. 
The potassium concentrations in groundwater ranged from 
3-22 mg/L with an average of 1.30 mg/L showing the 
potential for sewage and fertilizer pollution of groundwater 
(Choi, 1988; Gedamy, 2015).  

Conclusion 

To identify the hydro-geochemical factors that regulate the 
groundwater chemistry of the research site, groundwater 
samples from El Dir area, 2 km apart of Sohag city, Egypt, 
were collected for this study. The shallow aquifer in  El Dir 
village has a low concentration of dissolved ions, which 
suggests recent recharging from the Nile River. Contrarily, 
the deeper aquifer in the settlement has a comparatively 
higher dissolved ions content. Groundwater dominance 
types are Ca2+ - Mg2+ - HCO3

-, and Na+-Mg2+-Cl- indicating 
freshwater types. The statistical correlation study shows 
that cation exchange and mineral dissolution/precipitation 
are the main governing forces affecting the geochemistry of 
groundwater. However, Silicate weathering and rock water 
interaction are the main processes controlling groundwater 
characteristics. The dissolved major ions in groundwater 
samples show strong relationships between Mg2+- Cl- and 
Ca2+- Cl- postulate that cation exchange can also 
significantly impact groundwater composition while the 
cation exchange shows negatives value for most samples. 
The wastewater seepage leads to increase of NH4

+, NO3
-, 

and K+ reveals the contamination from the sewage plant, 
domestic wastewater, and fertilizers. 
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