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Recently, the maximum product spacing method has become one of the most efficient 
parameters estimation methods because of its estimates efficiency which retains most 
of the maximum likelihood estimation method properties including the invariance 
property. In this paper, relative efficiency measures will be used to compare the 
efficiency of the maximum product spacing method with the maximum likelihood 
estimation method using classical and Bayesian approaches for the power Topp-Leone 
distribution. The relative efficiency of the maximum product spacing method will be 
investigated using progressive Type-II censoring scheme. A simulation study and a real 
data set are performed to compare the efficiency between estimation methods. 
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1. Introduction  

Cheng and Amin (1983) presented for the first time the 
maximum product spacing (MPS) method which becomes 
one of the most efficient parameters estimation methods 
because its estimators have most of the maximum 
likelihood estimation (MLE) properties especially the 
invariance property, the Geometric mean (GM) for a 
parameter θ, Singh et al.(2014) and Bhatti et al. (2021), is 
represented by 

 
( ) ( )

1

1
1

1

( ; ) ( ; ) ; 1,2,..., 1,
n

n
i i

i

GM F x F x i n 
+

+
−

=

 = − = +
    (1) 

where, ( ; )F x   is the cumulative distribution function 

(CDF) and ( )0
( ; ) 0F x = , ( )1

( ; ) 1
n

F x
+

= , suppose 

that 
( ) ( )

1

1
1

( ; ) ( ; ) ( ; ) ,
n

i i
i

D x F x F x  
+

−
=

 = −
   then  

 ( ) ( ) ( ) ( ) ( )1 1
2

; ( ; ) ( ; ) ( ; ) 1 ( ; ) .
n

i i n
i

D x F x F x F x F x    
−

=

     = −   −
       (2) 

Singh et al. (2014), explained that product spacing (D) 
is an alternative to likelihood (L) for Bayesian inference and 
it retains most of the MLE method properties including the 
invariance property. 
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A progressive Type-II censoring scheme is described 

by Ng et al. (2004) where it is supposed that 𝑛 units be 
participated in a lifetime test experiment and the number of 
failures decided beforehand to be r units. In the first failure, 
R(1) units are removed randomly from the remaining 
survived units 𝑛 − 1. In the second failure, R(2) units are 

removed randomly from the remaining survived units 𝑛 –
R(1) − 1. Finally, In the r-th failure, all the remaining 
survived units 𝑅(r) ,  where 𝑅(r) = 𝑛 − r − 𝑅(1) − · · · − 𝑅(r−1) , 
are removed from the experiment. Hence, the progressive 
Type-II censoring scheme containing r and (1), …, 𝑅(r), gives 

the rule 𝑅(1) + · · · + 𝑅(r) = 𝑛 – r. One can see Balakrishnan 
and Aggrawalla (2000) and Balakrishnan and Saleh (2017) 
for more details. 

Topp and Leone (1955) presented the bounded Topp-
Leone (TL) distribution for empirical data with a J-shaped 
histogram as a powered band tool and automatically 
calculating machine failures. The Topp-Leone distribution 
is studied by many authors as Nadarajah and Kotz (2003), 
Ghitany et al. (2005), Zhou et al. (2006), van Dorp and 
Kotz (2006), Kotz and Seier (2007), Nadarajah (2009) and 
Genç (2012). 

The CDF and the probability density function (PDF) of 
the classical TL distribution, Nadarajah and Kotz (2003), 
are 

( )( ; ) 2 ;0 1; 0,TLF x x x x
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Ahmed (2021) presented for the first time the power Topp-Leone (PTL) distribution, Elgarhy et al. (2022), it has the 
following CDF and probability density function (PDF) 

 ( )( ; , ) 2 ;0 1; 0, 0; 1,PTLF x x x x
      = −       
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when β=1, the PTL distribution reduces to TL distribution, Topp and Leone (1955), some shapes of the density function 
for the PTL distribution are illustrated in Figure (1), Ahmed (2021). 

 
 

 

 
 

Figure (1): The PTL density functions 

 

One can see, in Figure (1), the density function has 
unimodal with right-skewed, left-skewed and symmetric 
curves. Also, the density is suitable for the lifetime data 
having J, L and increasing linear shapes. 

The main object of this manuscript is to investigate the 
efficiency of the MPS method using progressive Type-II 
censoring scheme for the PTL distribution via classical and 
Bayesian approaches using Markov Chain Monte Carlo 
(MCMC) technique. 

The rest of this paper is organized as follows: In 
Section (2), a useful transformation for the PTL distribution 
is presented. In Section (3), the MLE estimation method 
under the progressive Type-II censoring scheme is 
investigated. In Section (4), the MPS estimation method 
under the progressive Type-II censoring scheme is used. In 
Section (5), the relative efficiency measures of MPS 
estimators are discussed. In Section (6), a simulation study 
is investigated between MPS and MLE methods of 
estimation for the PTL distribution in different cases. In 
Section (7), a real data set is applied. Finally, in Section 
(8), a conclusion about the study is provided.   

 
2. A Useful Transformation for the PTL Distribution 

The quantile function (QF) of the PTL distribution gives 
some problems in mathematical properties and generating 
random numbers because it has an implicit form, a simple 
transformation will be used to solve this problem and give 
an explicit form for the QF. 

 

Completing the square will be used for CDF of the PTL 
distribution as follows:  
Since, 
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differentiating the last equation with respect to x yields 
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the QF of the PTL distribution is given by 
1

1
1 2

1 1 .qx q





 
  

= − −  
  

 

  (5) 

One can see, easily, the simple and explicit forms of 
the CDF, PDF and QF of the PTL distribution in (3), (4) 
and (5) which give flexibility for using different methods of 
parameter estimation. 
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3. The MLE Estimation Method under Censored Sample 
In this section, the MLE estimation method will be investigated under a progressive Type-II censoring scheme via classical 
and Bayesian techniques. 
 
3.1. The Censored MLE Method  
Let X(1), X(2), …, X(r) be the ordered observed failures in a random sample from n components with R(i) removal for the 

PTL(α,β;x) distribution, the likelihood function for parameters ,  using the progressive Type-II (PTII) censoring Scheme 

R(1), R(2),…,R(r) , Balakrishnan and Aggrawalla (2000), Balakrishnan and Cramer (2014),  is given by 
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the log likelihood function can be written as 
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The score functions for the parameters α and β are given by 
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 (9)

 
The unknown parameters of the MLE are estimated numerically by solving the nonlinear Equations (8) and (9) using a 

suitable iterative technique such as the Newton–Raphson algorithm. 
 
Obviously when r=n , the censored sample becomes a complete sample,  Equation (6) can be reduced as follows  

( ) ( )
1

, ; , ; ,
n

PTL

i

L x f x   
=

=
 

estimating parameters via last equation gives estimates under a complete sample. 
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3.2. Bayesian Approach Based on the Censored MLE Method 

In this subsection, the non-informative prior distributions for the parameters  and
 
 respectively will be used, there 

is not enough information about the distribution of the parameters, Jeffreys (1998), Singh et al. (2013) and Chandra and 
Rathaur (2017), as follows 

                                                          
1

( ) ;0 ,a  


=                (10) 

and 

1
( ) ;0 ,b  


=                     (11) 

In this section, the joint posterior distribution can be given by substituting  (10) , (11) and (7) into the next equation 
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The marginal posterior distribution of  and
 
  can be given by, respectively,  
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estimating  and
 
  can be obtained using the SE loss function or LINEX loss function. 

 
3.2.1. The SE Loss Function 

In this subsection, estimation of the marginal posterior distributions will be performed using the quadratic loss function 
or the SE loss function which is a symmetric loss function given by substituting (12) and (13) into the following equations, 
Guure et al.(2012), 
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The unknown parameters estimators of the Bayesian approach using integrations in (14) and (15) are not possible to be 
obtained numerically so the MCMC technique will be used. 
 
3.2.2. The LINEX Loss Function 

In this subsection, estimation of the marginal posterior distributions will be performed using the LINEX loss function 
which is an asymmetric loss function given by substituting (12) and (13) into the following equations, Guure et al.(2012), 
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The unknown parameters of the Bayesian technique via integrations in (16) and (17) cannot be estimated numerically 
therefore the MCMC technique will be used. 

 
3.3. The MCMC Technique 

In this subsection, the MCMC method will be discussed using the Gibbs sampling procedure in order to generate a 

sample from conditional posterior densities for the parameters  and  , for more details about the MCMC technique one 

can see Gelfand and Smith (1990) and Singh et al. (2013). The conditional posterior densities of the parameters  and
 
  

are given respectively by 
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The Bayes estimates of the parameter  and
 
  under SE loss function respectively are 
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where N is the number of iteration in the MCMC process, the Bayes estimates of the parameter  and
 
  under 

LINEX loss function respectively are: 
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where N is the number of iteration in the MCMC process. 
 

4. The MPS Estimation Method under Censored Sample 
In this section, the MPS estimation method will be applied under a progressive Type-II censoring scheme via classical 

and Bayesian techniques.
  

4.1 The Censored MPS Method  
Let X(1), X(2), …, X(r) be the ordered observed failures in a random sample from n components with R(i) removal for the 

PTL(α,β;x) distribution, the MPS for parameters ,  using the
 
progressive Type-II censoring scheme R(1), R(2),…,R(r) , Ng 

et al. (2012), Almetwally and Almongy (2019), is given by
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        

− −

−



( ) ( )( )

( )( )
( )

( )( ) ( )( )

( )( )

2 2 2 2

2 2
1

log 1 1 1 1 log 1 1

,

1 1 1 1 1 1

rr i i

i
i

r i

x x x

R

x x

 
   

 
 =

       − − − − − −
              −

   − − − − − −
      



 (26) 

and  

 

( ) ( )( ) ( )( ) ( )

( )( ) ( )( )

( ) ( )( ) ( )( ) ( )

( )( ) ( )( )

( ) ( )( ) ( )

1
2

2 2
2

1

1
2

1 1 1 1
1 1 1

2 2

1

1 1 1 log( )log , ;
2

1 1 1 1

1 1 1 log( ) 2 1 log( )

11 1 1 1

r i i i i
PTII

i

i i

i i i i

i i

x x x xD x

x x

x x x x x x x

x x


  

 
 


    

 
 

 






−

=

−

−

− − − −

−

  − − −       = 
     − − − − −

       

 − − −  −   − +
    − − − − −
        



( )( )

( ) ( )( ) ( )( ) ( )

( )( )

( )

( ) ( )( ) ( )( ) ( )( )

( )( )

2

1

1
2

2

1
2

2
1

1

2 1 1 1 log( )

1 1 1

2 1 1 1 log

.

1 1 1

r r r r

r

r i i i i

i
i

i

x

x x x x

x

x x x x

R

x




  





  








−

−

=

− −

 − − −
  −
 − − −
  

 − − −
  −
 − − −
  



  (27) 
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The unknown parameters of the MPS are estimated by solving the nonlinear Equations (26)  and (27), numerically, 
using a suitable iterative technique. 

Obviously when r=n , the censored sample becomes a complete sample,  Equation (24) can be reduced as follows  

( ) ( )( ) ( )( )
1

1
1

, ; , ; , ; ,
n

PTL PTLi i
i

D x F x F x     
+

−
=

 = −
 

 
estimating parameters via last equation gives estimates under a complete sample. 
 

4.2. Bayesian Approach Based on the Censored MPS Method  
The joint posterior distribution can be given by substituting  (10) , (11) and (25) into the next equation 

( )

( )

*

0 0

, ; ( ) ( )
( , ; ) ;0 ;0 ; 0 1.

, ; ( ) ( )

PTII

b a

PTII

D x
x a b x

D x d d

     
    

       

=      

 

 

The marginal posterior distribution of  and
 
  respectively can be given by  

 
* *

0

( ; ) ( , ; ) ;0 ;0 1,

b

x x d b x      =       (28) 

and 

 
* *

0

( ; ) ( , ; ) ;0 ;0 1,

a

x x d a x      =       (29) 

estimating  and
 
  can be performed using the SE loss function or LINEX loss function. 

 
4.2.1. The SE Loss Function 

Estimation of the marginal posterior distributions will be performed using the SE loss function, or the quadratic loss 
function given which is a symmetric loss function, substituting (28) and (29) into the following equations 

 
*

0

( ; ) ( ; ) ;0 ;0 1,

a

SEE x x d a x    =       (30) 

and 

 
*

0

( ; ) ( ; ) ;0 ;0 1.

b

SEE x x d b x     =       (31) 

The unknown parameters estimators of the Bayesian technique using integrations in (30) and (31) cannot be obtained 
numerically so the MCMC technique will be used. 

 
4.2.2. The LINEX Loss Function 

Estimation of the marginal posterior distributions will be performed using the LINEX loss function given by substituting 
(28) and (29) into the following equations 

 
*

0

1
( ; ) ln ( ; ) ;0 ;0 1,

a

h

LINEXE x e x d a x
h

    −
 −

=     
 
   (32) 

and 

 
*

0

1
( ; ) ln ( ; ) ;0 ; 0 1.

b

h

LINEXE x e x d b x
h

    −
 −

=     
 
   (33) 

The unknown parameters of the Bayesian approach via integrations in  (32) and (33) cannot be estimated numerically 
therefore the MCMC technique will be used. 

 
4.3. The MCMC Technique 

In this subsection, the MCMC technique will be discussed using the Gibbs sampling procedure. The conditional 

posterior densities of the parameters  and
 
  are given respectively by:
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( )( ) ( )( ) ( )( )

( )( ) ( )( )
( )

2 2 2
*

1 1
2

2 2

1

1
( ; ) 1 1 1 1 1 1

1 1 1 1 1 1 ,

i

r

i i
i

R
r

r i
i

x x x x

x x

  
  

 
 

  


−
=

=

       − − − − − − −            

       − − − − − −            




  (34) 

and 

 

( )( ) ( )( ) ( )( )

( )( ) ( )( )
( )

2 2 2
*

1 1
2

2 2

1

1
( ; ) 1 1 1 1 1 1

1 1 1 1 1 1 .

i

r

i i
i

R
r

r i
i

x x x x

x x

  
  

 
 

  
 −

=

=

       − − − − − − −            

       − − − − − −            





  (35) 

The Bayes estimates of the parameter  and
 
  under SE loss function respectively are: 

 ( )* *

1

1
( ; ) ( ; ),

N

SE j

j

E x x
N

     
=

=   (36) 

and 

 ( )* *

1

1
( ; ) ( ; ),

N

SE j

j

E x x
N

     
=

=   (37) 

where N is the number of iterations in the MCMC process, the Bayes estimates of the parameter  and
 
  under 

LINEX loss function respectively are: 

 ( )
* ( ; )*

1

1 1
( ; ) ln ,j

N
h x

LINEX

j

E x e
h N

  
  

−

=

 −
=  

 
  (38) 

and 

 ( )
* ( ; )*

1

1 1
( ; ) ln ,j

N
h x

LINEX

j

E x e
h N

  
  

−

=

 −
=  

 
  (39) 

where N is the number of iterations in the MCMC process. 
 

5. The Relative Efficiency of the MPS Estimators  
In this section, some relative efficiency (RE) measures, Vasudeva (1991), will be given in order to discuss the 

efficiency of MPS compared to other methods. Determining the root of mean square error (RMSE) ratio of the classical 
MLE to the classical MPS, for any parameter θ, under a complete sample can be given by  

 
1

RMSE of MLE (Complete) for
,

RMSE of MPS(Complete) for
RE




=   (40) 

one can see that if  RE1  > 1 it means that the MPS method gives more efficiency than the MLE method. The RMSE 
ratio of the classical MLE to the Bayesian MLE using the SE loss function, for any parameter θ, under the complete sample 
can be represented by 

 
2

RMSE of MLE (Complete) for
,

RMSE of MLE (Complete) using Bayesian (SE)for
RE




=   (41) 

the RMSE ratio of the classical MLE to the Bayesian MPS using the SE loss function, for any parameter θ, under the 
complete sample can be represented by  

 
3

RMSE of MLE (Complete) for
,

RMSE of MPS(Complete) usingBayesian (SE)for
RE




=   (42) 

The RMSE ratio of the classical MLE to the Bayesian MLE using the LINEX loss function, for any parameter θ, under 
the complete sample can be written as  

 
4

RMSE of MLE (Complete) for
,

RMSE of MLE (Complete) usingBayesian (LINEX)for
RE




=   (43) 
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the RMSE ratio of the classical MLE to the Bayesian MPS using the  LINEX loss function, for any parameter θ, under 
the complete sample can be given by  

 
5

RMSE of MLE (Complete) for
,

RMSE of MPS(Complete)Bayesian (LINEX)for
RE




=   (44) 

the RMSE ratio of the classical MLE to the classical MPS, for any parameter θ, under a progressive Type-II censoring 
scheme can be written as 

 
6

RMSE of MLE (Censored) for
,

RMSE of MPS(Censored) for
RE




=   (45) 

the RMSE ratio of the classical MLE to the Bayesian MLE using SE loss function, for any parameter θ, under 
progressive Type-II censoring scheme can be represented by  

 
7

RMSE of MLE (Censored) for
,

RMSE of MLE (Censored) Bayesian (SE)for
RE




=   (46) 

the RMSE ratio of the classical MLE to the Bayesian MPS using SE loss function, for any parameter θ, under 
progressive Type-II censoring scheme can be written as  

 
8

RMSE of MLE (Censored) for
,

RMSE of MPS(Censored) Bayesian (SE)for
RE




=   (47) 

the RMSE ratio of the classical MLE to the Bayesian MLE using LINEX loss function, for any parameter θ, under 
progressive Type-II censoring scheme can be given by  

 
9

RMSE of MLE (Censored) for
,

RMSE of MLE (Censored) Bayesian (LINEX)for
RE




=   (48) 

the RMSE ratio of the classical MLE to the Bayesian MPS using LINEX  loss function, for any parameter θ, under 
progressive Type-II censoring scheme can be represented by 

 
10

RMSE of MLE (Censored) for
.

RMSE of MPS(Censored) Bayesian (LINEX)for
RE




=   (49) 

Equations (40) to (49) will be used in a simulation study, in the next section, to determine the relative efficiency of MPS 
compared to the MLE method. 

 
6. A Simulation Study 

In this study, the efficiency of maximum product spacing 
for estimators of the PTL distribution parameters will be 
illustrated relative to maximum likelihood estimators in 
Bayesian and non-Bayesian approaches under complete 
and progressive Type-II censoring samples. The simulation 
study will be performed using random numbers generated 
with fixed seeds. Bias and RMSE for a parameter θ will be 

given by: ( ) ( )ˆ ˆBias , ,E   = −   

and ( ) ( ) ( )
2

ˆ ˆ ˆRMSE Var Bias , ,    = +
 

total bias and 

total RMSE for parameters θ1 , θ2 are given by: 

( ) ( )
2 2

1 1 2 2
ˆ ˆTotal Bias Bias , Bias , ,      = +

   
 and 

( ) ( )
2 2

1 2
ˆ ˆTotal RMSE RMSE RMSE .    = +

   
 

 
6.1. Under Censored Sample (Non-Bayesian) 

In this subsection, the algorithm for MLE and MPS 
methods under a progressive Type-II censoring scheme 
using a non-Bayesian approach will be illustrated in the 
following steps: 

Step (1): Generating an ordered random sample X(1), 
X(2),….,X(r) of sizes r=(5,10,15,25,50,150) where r represents 
failures for n=(10,20,30,50,100,300) respectively from the 

PTL distribution with fixed removals R(1),R(2),…,R(r-1) and 𝑅(r) 

= 𝑛 − r – 𝑅(1) − · · · − 𝑅(r−1) using fixed seeds, one can see 
that if  r=n it is reduced to the complete sample case. 

Step (2): Using a set of values of parameters as: (α=3, 
β=2). 

Step (3): Solving normal equations of estimators for 
every method independently as follows: 

In the MLE method under progressive Type-II censoring 
scheme: Solve (8) and (9), in the MPS method under 
progressive Type-II: Solve (26) and (27). 

Step (4): Calculating biases, MLEs and RMSEs of the 
PTL distribution for every method independently. 

Step (5): Calculating the relative efficiency measure 
from (45) in the censored sample case, the relative 
efficiency measure can be calculated from (40) in the 
complete sample case. 

Step (6): Repeating Step (1) to Step (4) 10000 times. 
 
The simulation results are indicated in appendix I and 

II, Tables: (3), (4), (9) and (10), Figures: (6), (9), (12) and 
(15), for MLE and MPS methods under progressive Type-II 
censoring scheme using the non-Bayesian approach. As 
sample size increases, biases and RMSEs decrease, 
moreover, when the sample size increases, the 
consistency of estimators' increases. On the other hand, as 
sample size increases, the relative efficiency measures of 
the MPS method decrease depending on the convergence 
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of the estimators for both methods to the true value of 
parameters which makes RMSEs decrease. 

One can see that the best efficient estimation method, 
according to biases and RMSEs, is the MPS method. On 
the other hand, relative efficiency measures of MPS 
estimators reflect that the MPS estimators' performance is 
better than the MLE estimators' performance through 
different sample sizes.  

 
6.2. Under Censored Sample (Bayesian) 

In this subsection, the algorithm for MLE and MPS 
methods under progressive Type-II censoring scheme using 
the Bayesian approach with MCMC technique, via the Gibbs 
sampling procedure, will be illustrated in the following steps: 

Step (1): Generating an ordered random sample 
X(1),X(2),….,X(r) of sizes r=(5,10,15,25,50,150) where r 
represents failures for n=(10,20,30,50,100,300) respectively 
from the PTL distribution with fixed removals R(1), R(2),…,R(r-

1) and 𝑅(r) = 𝑛 − r – 𝑅(1) − · · · − 𝑅(r−1) using fixed seeds, one 
can see that if  r=n it is reduced to the complete sample 
case. 

Step (2): Using a set values of parameters as: (α=3, 
β=2). 

Step (3): Generating posterior for α and β for every 
method independently as follows: 

In the MLE method using MCMC under progressive 
Type-II censoring scheme: Generate posterior for α and β 
from (18) and (19) respectively where the Bayes estimate of 
the parameters under SE loss function is given by (20) and 
(21), the Bayes estimate of the parameters under LINEX 
loss function is given by (22) and (23). 

In the MPS method using MCMC with complete sample: 
Generate posterior for α and β from (34) and (35) 
respectively where the Bayes estimate of the parameters 
under SE loss function is given by (36) and (37), the Bayes 
estimate of the parameters under LINEX loss function is 
given by (38) and (39). 

Step (4): Calculating biases, MLEs and RMSEs of the 
PTL distribution for every method independently. 

Step (5): Calculating the relative efficiency measures 
from (46) to (49), the relative efficiency measures can be 
calculated from (41) to (44) in the complete sample case. 

Step (6): Repeating Step (1) to Step (4) 10000 times. 
 
The study results are indicated in appendix I and II, 

Tables: from (5) to (8) and from (11) to (14), Figures: (7), 
(8), (10), (11), (13), (14), (16) and (17) for the MLE and 
MPS methods under progressive Type-II censoring 
scheme using Bayesian approach with MCMC technique. 
As sample size increases, biases and RMSEs decrease. 
Moreover, when sample size increases, the consistency of 
estimators increases. On the other hand, as sample size 
increases, the relative efficiency measures decrease 
depending on the convergence of the estimators for both 
methods to the true value of parameters which makes 
RMSEs decrease. 

One can see that, the Bayesian approach gives the 
MPS and MLE estimation methods under progressive 
Type-II censoring scheme more efficiency than classical 

methods, according to biases and RMSEs, especially the 
MPS method. On the other hand, relative efficiency 
measures reflect that the Bayesian MPS estimators' 
performance is better than the Bayesian MLE estimators' 
performance through different sample sizes. 

Moreover, it is clear that, using the Bayesian approach 
in estimation methods under the progressive Type-II 
censoring scheme with LINEX loss function gives, 
according to biases and RMSEs, more efficient estimators 
than the SE loss function estimators. 

 
7. Application 

In this section, the MPS efficiency will be 
investigated practically using a real data set, where 
Ahmed (2021) provided a real dataset following the 
PTL (2.286, 4.328) distribution, the dataset 
represents the lifetime (Hours) of classical lamps for 
50 devices as follows:  0.913, 0.786, 0.860, 0.904, 
0.971, 0.616, 0.961, 0.789, 0.817, 0.722, 0.956, 
0.835, 0.853, 0.692, 0.850, 0.677, 0.898, 0.965, 
0.820, 0.964, 0.865, 0.947, 0.798, 0.746, 0.926,  
0.709, 0.615, 0.747,  0.931, 0.913, 0.895,  0.745, 
0.839,  0.766, 0.690, 0.531, 0.838,  0.846, 0.876, 
0.817, 0.719,  0.907, 0.915,  0.879,  0.890, 0.865,  
0.869,  0.772,  0.933,  0.875.  

The estimators, standard error (ST) and Kolmogorov–
Smirnov (KS) test statistic of MLE and MPS parameters 
estimation methods will be calculated under complete and 
censored sample cases.   

  
7.1. Under Complete Sample 

In this example, MLE and MPS methods are performed 
under the complete sample, via Mathematica package 
version 10, it provides powerful data visualization tools. All 
results are included in the Table (1), the graph of the 
probability density functions (PDFs) for different 
parameters estimation methods is indicated in the Figure 
(2) and the graph of the empirical CDF compared to the 
cumulative distribution functions (CDFs) of the  PTL 
distribution using different parameters estimation methods 
is indicated in the Figure (3).  

 

Figure (2): Probability density functions for different 
parameters estimation methods. 
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Figure (3): The empirical CDF compared to some CDFs of 
the PTL distribution using different parameters estimation 
methods. 

 

Table (1): Estimators, ST, KS and P-value for MLE and 
MPS methods. 

Method parameters Estimators 
Standard 

Error 
KS 

p-
value 

MLE 
α 2.286 1.054 

0.110 0.537 
β 4.328 0.008 

MPS 
α 3.251 0.954 

0.075 0.683 
β 3.694 0.005 

Bayesian 
based on 
MLE 

α 3.877 0.748 
0.054 0.816 β 3 0.003 

Bayesian 
based on 
MPS 

α 3.914 0.519 
0.041 0.928 β 3 0.002 

 
It is clear that, from the Table (1), the MPS method 

using the Bayesian approach with the MCMC technique 
can be considered the most efficient estimation method in 
this example because it has the smallest ST and KS values 
and the largest P-value. 
7.2. Under Censored Sample 

In this example, MLE and MPS methods are performed 
under the progressive Type-II censoring scheme where the 
failed items are considered 45 items and the removed 
items are considered 5 items, via Mathematica package 
version 10. All results are included in the Table (2), the 
graph of PDFs of the PTL distribution for different 
parameters estimation methods is indicated in the Figure 
(4) and the graph of the empirical CDF compared to CDFs 
of the PTL distribution using different parameters 
estimation methods is indicated in the Figure (5).  

It is clear that, from Table (2), the MPS method using 
the Bayesian approach with the  MCMC technique, via the 
Gibbs sampling procedure, under the progressive Type-II 
censoring scheme can be considered the most efficient 
estimation method in this example because it has the 
smallest ST and KS values and the largest P-value. 

 

Figure (4): Probability density functions for different 
parameters estimation methods in the censored sample. 

 
 

 

Figure (5): The empirical CDF compared to some CDFs of 
the PTL distribution using different parameters estimation 
methods in the censored sample. 

 

Table (2): Estimators, ST, KS and P-value for MLE and 
MPS methods. 

Method parameters Estimators 
Standard 

Error 
KS 

P-
value 

MLE 
(PTII) 

α 11.24 3.172 
0.213 0.174 

β 1.494 1.518 
MPS 
(PTII) 

α 5.724 1.825 
0.180 0.218 

β 2.178 0.672 
Bayesian 
based on 

MLE 
(PTII) 

α 3.366 1.024 

0.169 0.301 
β 2.779 0.429 

Bayesian 
based on 

MPS 
(PTII) 

α 3.614 0.792 

0.147 0.508 
β 2.806 0.157 
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8. Conclusion 
The transformation of completing the square gives the PTL 
distribution more flexibility in mathematical properties and 
generating random numbers which helps easily to use MLE 
and MPS methods. The MPS method is an efficient 
estimation method having good performance with small 
biases and small RMSEs compared to the MLE method in 
Bayesian and non-Bayesian approaches under a complete 
sample and progressive Type-II censoring scheme. The 
Bayesian estimation approach with the MCMC technique 
has a better performance with the smallest biases and the 
smallest RMSEs especially when the LINEX loss function 
is used. The author encourages studying more about the 
MPS estimation method with the Bayesian approach in 
other censoring schemes. 
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Appendix I 

Estimation methods tables 
Table (3): MLE Method (Complete) 

 

Sample 
 Size 

Parameters 
Mean of 

 Estimators 
Biases 

Total 
Bias 

RMSEs 
Total 
RMSE 

10 α=3 266.034 263.034 263.052 634.357 634.418 
β=2 5.074 3.074 8.78 

20 α=3 140.205 137.205 137.211 428.885 428.916 
β=2 3.374 1.374 5.136 

30 α=3 87.271 84.271 84.275 319.847 319.866 
β=2 2.784 0.784 3.464 

50 α=3 38.851 35.851 35.854 179.422 179.438 
β=2 2.452 0.452 2.437 

100 α=3 10.17 7.17 7.172 70.798 70.809 
β=2 2.172 0.172 1.248 

300 α=3 3.519 0.519 0.524 2.272 2.36 

β=2 2.069 0.069 0.639 

 
Table (4): MPS Method (Complete) 

 

Sample 
 Size 

Parameters 
Mean of 

Estimators 
Biases 

Total 
Bias 

RMSEs 
Total 
RMSE 

RE1 

10 α=3 22.17 19.17 21.375 108.6 109.603 5.79 
β=2 11.455 9.455 14.795  

20 α=3 11.355 8.355 9.74 49.125 49.992 8.58 
β=2 7.006 5.006 9.272  

30 α=3 7.94 4.94 5.829 28.681 29.353 10.90 
β=2 5.094 3.094 6.247  

50 α=3 5.716 2.716 3.195 17.675 18.054 9.94 
β=2 3.682 1.682 3.679  

100 α=3 3.749 0.749 1.078 9.463 9.611 7.37 
β=2 2.775 0.775 1.682  

300 α=3 2.904 -0.096 0.315 1.647 1.806 1.31 

β=2 2.3 0.3 0.742  

 
Table (5): Bayesian approach (SE loss function) based on MLE method (Complete)  

 

Sample 
 Size 

Parameters 
Mean of  

Estimators 
Biases 

Total 
Bias 

RMSEs 
Total 
RMSE 

RE2 

10 α=3 2.066 -0.934 0.934 1.07 1.08 587.42 
β=2 1.985 -0.015 0.15  

20 α=3 2.46 -0.54 0.54 0.733 0.733 585.15 
β=2 2 -2.496 ×10-6 4 ×10-6  

30 α=3 2.62 -0.38 0.38 0.584 0.584 547.72 
β=2 2 -2.104 ×10-6 4 ×10-6  

50 α=3 2.749 -0.251 0.251 0.454 0.454 395.24 
β=2 2 -1.824 ×10-6 4 ×10-6  

100 α=3 2.86 -0.14 0.14 0.318 0.318 222.67 
β=2 2 -1.312 ×10-6 4 ×10-6  

300 α=3 3.068 0.068 0.068 0.261 0.261 9.04 

β=2 2 1.6 ×10-7 4 ×10-6  
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Table (6): Bayesian approach (SE loss function) based on MPS method (Complete) 
 

Sample 
 Size 

Parameters 
Mean of  

Estimators 
Biases 

Total 
Bias 

RMSEs 
Total 
RMSE 

RE3 

10 α=3 2.345 -0.655 0.673 0.897 0.952 666.41 
β=2 1.846 -0.154 0.317  

20 α=3 2.66 -0.34 0.34 0.641 0.641 669.14 
β=2 2 -1.872 ×10-6 4 ×10-6  

30 α=3 2.776 -0.224 0.224 0.523 0.523 611.60 
β=2 2 -1.56 ×10-6 4 ×10-6  

50 α=3 2.86 -0.14 0.14 0.418 0.418 429.28 
β=2 2 -1.232 ×10-6 4 ×10-6  

100 α=3 2.927 -0.073 0.073 0.301 0.301 235.25 
β=2 2 -8.32 ×10-7 4 ×10-6  

300 α=3 2.977 -0.023 0.023 0.169 0.169 13.96 

β=2 2 -4.8×10-7 4 ×10-6  

 
Table (7): Bayesian approach (LINEX Loss Function at h= -1) based on MLE method (Complete)  

 

Sample 
 Size 

Parameters 
Mean of 

 Estimators 
Biases 

Total 
Bias 

RMSEs 
Total 
RMSE 

RE4 

10 α=3 2.221 -0.779 0.779 
 

0.95 0.962 659.48 
β=2 1.992 -7.802 ×10-3 0.15  

20 α=3 2.599 -0.401 0.401 0.653 0.653 656.84 
β=2 2 -2.496 ×10-6 4 ×10-6  

30 α=3 2.727 -0.273 0.273 0.532 0.532 601.25 
β=2 2 -2.104 ×10-6 4 ×10-6  

50 α=3 2.827 -0.173 0.173 0.424 0.424 423.20 
β=2 2 -1.824 ×10-6 4 ×10-6  

100 α=3 2.903 -0.097 0.097 0.305 0.305 232.16 
β=2 2 -1.312 ×10-6 4 ×10-6  

300 α=3 3.036 0.036 0.036 0.252 0.252 9.37 

β=2 2 1.6 ×10-7 4 ×10-6  

 
Table (8): Bayesian approach (LINEX Loss Function at h= -1) based on MPS method (Complete) 

 

Sample 
 Size 

Parameters 
Mean of 

 Estimators 
Biases 

Total 
Bias 

RMSEs 
Total 
RMSE 

RE5 

10 α=3 2.569 -0.431 0.446 
 

0.782 0.839 756.16 
β=2 1.884 -0.116 0.302  

20 α=3 2.83 -0.17 0.17 0.594 0.594 722.08 
β=2 2 -1.872 ×10-6 4 ×10-6  

30 α=3 2.899 -0.101 0.101 0.498 0.498 642.30 
β=2 2 -1.56 ×10-6 4 ×10-6  

50 α=3 2.944 -0.056 0.056 0.407 0.407 440.88 
β=2 2 -1.232 ×10-6 4 ×10-6  

100 α=3 2.972 -0.028 0.028 0.297 0.297 238.41 
β=2 2 -8.32 ×10-7 4 ×10-6  

300 α=3 2.992 -8.422 ×10-3 8.422×10-3 0.168 0.168 14.05 

β=2 2 -4.8×10-7 4 ×10-6  
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Table (9): Progressive Type-II Censoring Scheme (r = 0.5 n) MLE Method 
 

Sample 
Size 

Parameters R 
Mean of 

Estimators 
Biases 

Total 
Bias 

RMSEs 
Total 
RMSE 

10 α=3 5 490.206 487.206 487.374 1.028×103 1.0283 ×103 

β=2 14.799 12.799 24.858 
20 α=3 10 158.715 155.715 156.266 509.633 510.173 

β=2 15.108 13.108 23.466 
30 α=3 15 69.883 66.883 68.092 261.408 262.365 

β=2 14.775 12.775 22.394 
50 α=3 25 15.754 12.754 17.554 55.862 59.659 

β=2 14.061 12.061 20.944 
100 α=3 50 4.905 1.905 10.579 14.368 22.645 

β=2 12.406 10.406 17.503 
300 α=3 150 3.15 0.15 0.879 0.699 1.546 

β=2 2.866 0.866 1.379 

 
Table (10): Progressive Type-II Censoring Scheme (r = 0.5 n) via MPS Method 

 

Sample Size Parameters R Mean of Estimators Biases 
Total 
Bias 

RMSEs 
Total 
RMSE 

RE6 

10 α=3 5 82.727 79.727 83.635 270.025 272.275 3.78 

β=2 27.267 25.267 34.93  
20 α=3 10 28.147 25.147 34.378 133.21 137.105 3.72 

β=2 25.441 23.441 32.448  
30 α=3 15 12.968 9.968 23.406 58.554 65.622 4.00 

β=2 23.177 21.177 29.626  
50 α=3 25 4.928 1.928 17.848 21.361 33.139 1.80 

β=2 19.744 17.744 25.335  
100 α=3 50 2.493 -0.507 14.083 6.821 21.734 1.04 

β=2 16.074 14.074 20.636  
300 α=3 150 3.018 0.018 0.155 0.217 1.005 1.54 

β=2 2.154 0.154 0.982  

 
Table (11): Bayesian approach (SE loss function at h= -1) based on progressive type-II censoring scheme (r = 

0.5 n) via MLE method 
 

Sample 
 Size 

Parameters R 
Mean of 

 Estimators 
Biases 

Total 
Bias 

RMSEs 
Total 
RMSE 

RE7 

10 α=3 5 7.477 4.477 4.762 4.501 4.787 214.81 

β=2 3.622 1.622 1.629  
20 α=3 10 4.516 1.516 1.606 1.97 2.092 243.87 

β=2 2.53 0.53 0.703  
30 α=3 15 4.65 1.65 1.778 1.868 2.007 130.72 

β=2 2.66 0.66 0.735  
50 α=3 25 4.648 1.648 1.791 1.772 1.921 31.06 

β=2 2.702 0.702 0.743  
100 α=3 50 4.62 1.62 1.776 1.664 1.821 12.44 

β=2 2.727 0.727 0.741  
300 α=3 150 3.658 0.658 0.712 1.3 1.423 1.09 

β=2 2.271 0.271 0.578  
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Table (12): Bayesian approach (SE loss function at h= -1) based on progressive type-II censoring scheme (r = 
0.5 n) via MPS method 

 

Sample 
 Size 

Parameters R 
Mean of 

 Estimators 
Biases 

Total 
Bias 

RMSEs 
Total 
RMSE 

RE8 

10 α=3 5 4.565 1.565 1.714 1.768 1.892 543.50 

β=2 2.7 0.7 0.674  
20 α=3 10 4.546 1.546 1.685 1.703 1.837 277.72 

β=2 2.67 0.67 0.687  
30 α=3 15 4.486 1.486 1.607 1.67 1.816 144.47 

β=2 2.611 0.611 0.713  
50 α=3 25 4.427 1.427 1.528 1.691 1.805 33.05 

β=2 2.546 0.546 0.632  
100 α=3 50 4.246 1.246 1.326 1.631 1.783 12.70 

β=2 2.453 0.453 0.723  
300 α=3 150 3.49 0.49 0.528 1.144 1.257 1.23 

β=2 2.197 0.197 0.522  

 
Table (13): Bayesian approach (LINEX loss function at h= -1) based on progressive type-II censoring scheme (r 

= 0.5 n) via MLE method 
 

Sample 
 Size 

Parameters R 
Mean of 

 Estimators 
Biases 

Total 
Bias 

RMSEs 
Total 
RMSE 

RE9 

10 α=3 5 4.654 1.654 1.763 2 2.131 482.54 

β=2 2.612 0.612 0.736  
20 α=3 10 4.434 1.434 1.583 1.56 1.716 297.30 

β=2 2.671 0.671 0.714  
30 α=3 15 4.267 1.267 1.405 1.491 1.641 159.88 

β=2 2.607 0.607 0.685  
50 α=3 25 4.055 1.055 1.178 1.421 1.567 38.07 

β=2 2.525 0.525 0.66  
100 α=3 50 3.782 0.782 0.887 1.288 1.426 15.88 

β=2 2.418 0.418 0.612  
300 α=3 150 3.066 0.066 0.146 0.955 1.081 1.43 

β=2 2.13 0.13 0.507  

 
 

Table (14): Bayesian approach (LINEX loss function at h= -1) based on progressive type-II censoring scheme (r 
= 0.5 n) via MPS method 

 

Sample 
 Size 

Parameters R 
Mean of 

 Estimators 
Biases 

Total 
Bias 

RMSEs 
Total 
RMSE 

RE10 

10 α=3 5 4.457 1.457 1.61 1.524 1.68 612.08 

β=2 2.685 0.685 0.707  
20 α=3 10 4.342 1.342 1.487 1.47 1.621 314.73 

β=2 2.641 0.641 0.684  
30 α=3 15 4.137 1.137 1.267 1.365 1.508 173.98 

β=2 2.56 0.56 0.641  
50 α=3 25 3.902 0.902 1.015 1.276 1.412 42.25 

β=2 2.466 0.466 0.605  
100 α=3 50 3.626 0.626 0.718 1.146 1.273 17.79 

β=2 2.352 0.352 0.554  
300 α=3 150 2.97 -0.03 0.075 0.894 1.011 1.53 

β=2 2.069 0.069 0.471  
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Appendix II 

 
Estimation methods graphs: RMSEs 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure (6): The total RMSEs of MLE and MPS methods 

for different complete sample sizes 
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Figure (7): The total RMSEs of Bayesian MLE and MPS 

methods for different complete sample sizes 
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Figure (8): The total RMSEs of Bayesian MLE and MPS 

methods for different complete sample sizes 
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Figure (9): The total RMSEs of MLE and MPS methods 

for different censored sample sizes 
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Figure (10): The total RMSEs of Bayesian MLE and MPS 

methods for different censored sample sizes 
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Figure (11): The total RMSEs of Bayesian MLE and MPS 

methods for different censored sample sizes 
 

 
 
Estimation methods graphs: Biases 
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Figure (12): The total Biases of MLE and MPS methods 

for different complete sample sizes 
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Figure (13): The total Biases of Bayesian MLE and MPS 

methods for different complete sample sizes 
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Figure (14): The total Biases of Bayesian MLE and MPS 

methods for different complete sample sizes 
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Figure (15): The total Biases of MLE and MPS methods 

for different censored sample sizes 
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Figure (16): The total Biases of Bayesian MLE and MPS 

methods for different censored sample sizes 
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Figure (17): The total Biases of Bayesian MLE and MPS 

methods for different censored sample sizes 
 

 
 

 
 

 

 

 

 

 

 


