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Paleocene sediments exposed at Nukhul, Sinai, Egypt were subjected to a 
detailed calcareous nannofossil biostratigraphy besides tracking changes in carbonate 
contents, δ13C and δ18O values. This Paleocene outcrop extends through the Dakhla - 
Tarawan formations. About 8.5 m of Dakhla F. consists of grey calcareous shale, and 2 
m from the Tarawan F. consists of yellowish argillaceous limestone were investigated.  
Five calcareous nannofossil zones (NP2/3 - NP7/8) were delineated. The Late Danian 
Event was traced at a level characterized by an abrupt decrease in carbonate content 
and δ18O values, and minimum values of calcareous nannofossil’s diversity and 
abundance that support warming conditions during this interval. The Danian/Selandian 
contact was placed in coincidence with the base of Zone NP5. No remarkable changes 
in lithology or in δ13C and δ18O values were noted close to this boundary except an 
abrupt drop in δ18O values just below it and increase in δ13C values slightly above this 
level. A distinct drop in carbonate content and calcareous nannofossil diversity was 
documented close to this boundary indicating warming episode. Calcareous 
nannofossils indicate a hiatus within Danian at Nukhul. The Selandian/Thanetian 
boundary was placed in coincidence with the base of NP7/8 combined Zone. No 
remarkable change in lithology, calcareous nannofossil assemblage, or δ13C and δ18O 
values were recorded across this boundary except the sudden drops in δ13C and δ18O 
values slightly below and above it. Calcareous nannofossils, δ13C and δ18O data reflect 
an upward increase in paleotemperature throughout the Paleocene at Nukhul.  

 

1. Introduction  

Paleocene Series was formally divided into three 
Stages (Danian, Selandian, plus Thanetian, Jenkins and 
Luterbacher 1992). The base of Selandian Stage’s Global 
Stratotype Section and Point (GSSP) were chosen at 
Zumaia in northern Spain (Schmitz et al., 2011). During 
Paleocene, short-lived warming episodes were 
encountered that resulted sedimentological, 
paleontological, geochemical and climatic variations 
(Thomas et al., 1999; Speijer, 2003a, b; Arenillas et al., 
2008; Quillévéré et al., 2008; Sprong et al., 2011, 2012, 
2013; Schmitz et al., 2011; Dinarès-Turell et al., 2012; 
Monechi et al., 2013; Kasem et al., 2017; Faris et al., 
2018; Kasem et al., 2022). These events include Danian 
⁄Selandian (D/S) transition (Schmitz et al., 2011), and the 
Mid Paleocene Biotic Event (MPBE) (Bernaola et al., 
2007). 
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These warming episodes had been characterized by 
drops in carbon isotope excursions (CIEs) and the level of 
carbonate, as well as variations in calcareous nannofossil 
assemblages (Dupuis et al., 2003; Aubry et al., 2007; 
Bernaola et al., 2007; Schmitz et al., 2011; Soliman et al., 
2014; Karoui-Yaakoub et al., 2016, Kasem et al., 2017; 
Faris et al., 2018, and Abu Shama et al., 2020). The 
negative δ13C excursions are usually interpreted as a 
response to increase in paleotemperature (Bornemann, 
2003), possibly a carbon reservoir added more 13C to the 
water and atmosphere (Dickens et al. 1997). These 
variations caused an increase in atmospheric CO2 and 
temperature, as well as making the calcite compensation 
depth (CCD) shallower (Zachos et al. 2005; Coccioni et al., 
2010). 

At Zumaia, the Danian/Selandian limit is marked by a 
lithological change from the Aitzgorri F. that is limestone-
dominated to the Itzurun F., which consists of marls. 
Moreover, it was marked by the ending of blooming of 
Braarudosphaera bigelowii close to the base of calcareous 
nannofossil Zone NP5 (Schmitz et al., 2011). The start of 
Thanetian at Zumaia was delineated relative to the MPBE 
(Schmitz et al., 2011). 

The Paleocene sequences in Egypt have detailed 
records for tracking biologic and isotopic variations 
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throughout the Danian-Thanetian. Therefore, several 
Paleocene successions had received biostratigraphic 
studies based on calcareous nannofossil assemblages 
(Dupuis et al., 2003; Kasem et al., 2017, 2022, more 
references therein). Faris and Salem (2007) studied the 
Paleocene-lower Eocene at Nukhul (Sinai, Egypt) in terms 
of calcareous nannofossils. They placed the D/S boundary 
by the LO of Fasciculithus taxa. They recorded a hiatus at 
the S/T boundary at the Gabal Nukhul. 

The essential targets of this study include 
implementation of calcareous nannofossil biozonation and 
denoting the stage boundaries of the study interval, track 
variations in calcareous nannofossils, δ13C and δ18O data, 
carbonate contents and shed some light on the climatic 
changes throughout the Danian-Thanetian. 

 

 

Fig. 1: A map shows the position of the Nukhul section 

 

2. Materials and Methods  

Forty nine rock samples were examined from 
Paleocene at Nukhul, West Central Sinai (Fig. 1). For 
calcareous nannofossil examination, about 0.1gm of 
dry sediment had been dissolved in 10 ml of distilled 
water and a 0.25 mm of the solution was placed on a 
22x22mm coverslip, which was dried on a hot-plate and 
mounted on a slide by D.P.X mountant. Species were 
counted in definite fields of view (ranges form 27-65 FOVs) 
and relative abundances were recognized (Kasem et al., 
2022). The slides were investigated at 1250X magnification 
by Euromex Iscope microscope. Oxygen as well as carbon 
isotopes had been measured by Finnigan-MAT 252 
spectrometer at University of Florida. Inorganic carbon was 
measured at Stable Isotope Mass Spectrometer Laboratory 
at University of Florida, USA. 

3. Geologic setting and lithostratigraphy 

3.1. Geologic setting 

Sinai is bounded by African, Arabian Peninsula and 
Mediterranean Sea from the west, east, and north, 
respectively. The study section locates at the southern 
flank of Wadi Nukhul, West Central Sinai. It is situated at 
Latitude 29°04'46"N and Longitude 33° 10'21"E. The study 
interval belongs to Paleocene. A geographic map of Egypt 
during the late Paleocene is provided below showing the 
various rock facies types in the study area (Fig. 2, after 
Guiraud and Bosworth, 1999). 

 

Fig. 2: A paleogeographic map of Egypt during the late 
Paleocene modified after Guiraud and Bosworth (1999). 

 

3.2. Lithostratigraphy 

The study interval that outcrops at Nukhul extends 
through the Dakhla - Tarawan formations.  

a- The Dakhla Formation 

The Dakhla Formation’s type section crops out north of 
Mut, Dakhla Oasis (Said, 1961). It is 225 m of marls, 
shales, as well as clays intercalated with calcareous beds 
rich in sands and silts underlie the Tarawan F. and overlie 
the Duwi F. (Awad and Ghobrial, 1965). The included part 
of Dakhla F. at Nukhul is about 8.5 m of grey calcareous 
shale and is assigned to age Danian–Thanetian (Fig. 3).  
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Fig. 3: Stratigraphic columnar section of the Danian-Thanetian interval at Nukhul, Sinai, Egypt and a field photograph 
shows panoramic view of the study interval. 

  

b- The Tarawan Formation 

The type locality of the Tarawan F. was hosted by 
Gabal Tarawan at Kharga Oasis, Western Desert (Awad 
and Ghobrial, 1965). This formation consists of 
fossiliferous, argillaceous limestone at G. Tarawan. This 
formation is marly in its lower portion, intercalated with 
shale and clay beds and grades into chalky limestone and 
siliceous limestone (Awad and Ghobrial, 1965). About two 
meters from the bottom of this formation has been probed 
and is consisting of yellowish argillaceous limestone. 
Calcareous nannofossil data reveal that this formation 
conformably overlies the Dakhla F.. This formation belongs 
to the Thanetian Age (Fig. 3).  

4. Calcareous Nannofossil Biostratigraphy 

Variations in calcareous nannofossil assemblages are 
helpful tool for biozonation and world-wide correlation of 
Cenozoic deposits (Romein, 1979; Varol, 1989; Agnini et 
al., 2014; 2017). Paleocene Zonation Scheme suggested 
by Martini (1971) was applied in this study with a slight 
modification, and Romein’s (1979) conclusion of gathering 
Zone NP2 plus NP3 and Zone NP7 plus Zone NP8 was 
adopted. Abbreviations in this manuscript include LO 

(Lowest Occurrence), when the first specimen appears; 
LCtO (lowest continuous occurrence), where the 
occurrence is scarce; however stratigraphic range became 
continued; LCO (lowest common occurrence); where the 
species became common; and HO for “Highest 
Occurrence”, where the taxon vanishes. The stratigraphic 
distributions of the taxa recognized and their counts are 
shown in the table. Microphotographs of some taxa are 
shown on plates 1 and 2. Five zones were set apart 
covering the study interval. These biozones are discussed 
below.  

4.1 Cruciplacolithus tenuis Zone (NP2/3, and extends 
from the LO of Cruciplacolithus tenuis to the LO of 
Ellipsolithus macellus (Romein, 1979). There are disputes 
concerning the distinction of C. danicus, C. edwardsii, C. 
asymmetricus, and C. consuetus (Brotzen, 1959; Van Heck 
and Prins, 1987, and Romein, 1979). As a result, it was 
suggested to exclude C. danicus from being a reliable 
zonal marker (Romein, 1979 and this study). This zone 
covers about 3 m from the lower part of Dakhla F. at 
Nukhul (Fig. 3), and is assigned to the Danian Age. 

4.2. Ellipsolithus macellus Zone (NP4, and spans from 
the LO of Ellipsolithus macellus to the LO of Fasciculithus 
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tympaniformis, Martini, 1971). It is ⁓ 1.7 m thick at Nukhul 
(Fig. 3). Discontinuous range of E. macellus probably 
resulted from diagenesis and/or dissolution (Table). Varol 
(1989) subdivided the interval that is equivalent to the NP4 
Zone into several zones and subzones, however, this 
subdivision cannot be fully applied in this study. Later, E. 
macellus Zone had been subdivided into NP4a plus NP4b 
Subzones based on the LO of Sphenolithus primus 
(Quillévéré et al., 2002). In 2014, Agnini et al. used the LO 
of S. moriformis group, which includes S. primus and S. 
moriformis, to delineate the start of Zone CNP6. However, 
discrepancies were documented relative to the LOs of S. 
primus (Bernaola et al. 2009) and this species is scarce 

and discontionous in the bottom of its stratigraphic range 
(Schmitz et al. 2011, and Monechi et al. 2013). Thus, the 
LCtO of S. primus was used as marker for biostratigraphic 
studies (Quillevere et al. 2002, and Monechi et al. 2013). 
The LCtO of S. primus is at 5.8 m above its LO, and below 
the boundary between the Danian and Selandian at 
Zumaia (Bernaola et al., 2009), however, S. primus was 
observed ~2.5 m overhead of the Selandian’s base at the 
Egyptian Qreiya section (Schmitz et al. 2011). In this study, 
S. primus continuously occurs just above the LO of 
Lithoptychius schmitzii, the only representative of the first 
radiation of Fasciculithus recorded at Nukhul (Table). 

 

Table: Abundance of the Danian-Thanetian coccoliths at Nukhul, Sinai, Egypt (Continued) 
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Table: Abundance of the Danian-Thanetian coccoliths at Nukhul, Sinai, Egypt 
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4.3. Fasciculithus tympaniformis Zone (NP5, extends 
from the LO of Fasciculithus tympaniformis to the LO of 
Heliolithus kleinpellii (Hay et al., 1967). The LO of F. 
tympaniformis was used to delineate the base of Martini’s 
(1971)  Zone NP5, Okada and Bukry’s (1980) Zone CP4; 
Romein’s (1979) Fasciculithus tympaniformis Zone and 
Varol’s (1989) Zone NTp9. Fasciculithus tympaniformis 

Zone covers ⁓0.8 m within the Dakhla F. at Nukhul (Fig. 3). 

4.4 Heliolithus kleinpellii Zone (NP6, extends from the 
LO of Heliolithus kleinpellii to the LO of Discoaster mohleri, 
Hay et al., 1967). It is about 2 m thick at Nukhul (Fig. 3, 
Table) and is appointed to Thanetian Age. The 
biostratigraphic significance of the LO of H. kleinpellii was 
disputed where intermediate forms between H. kleinpellii 
and H. cantabriae were recorded (Agnini et al. 2007). 
Therefore, the LO of H. kleinpellii has to be utilized as a 
zonal marker with caution. Several Egyptian sections have 
a minor hiatus at the S/T indicated by the absence of Zone 

NP6 (e. g. Tantawy, 1998, and Faris and Salem, 2007). 
Heliolithus kleinpellii disappears in the basal part of Zone 
NP7/8 (Table).  

4.5. Discoaster mohleri Zone (NP7/8, spans the interval 
between the LOs of Discoaster mohleri and D. 
multiradiatus, Romein, 1979). Discoaster mohleri was 
considered a reliable bioevent (Martini, 1971, and Agnini et 
al., 2014, 2017). However, Heliolithus riedelii is not a 
reliable zonal marker (Romein, 1979; Varol, 1989; Agnini et 
al., 2007b). Consequently, it was excluded from being 
reliable marker (Romein, 1979). Bukry (1973) had used 
Discoaster nobilis in place of Heliolithus riedelii, but D. 
nobilis was recorded in coincidence with the first occurence 
of D. multiradiatus (Romein, 1979). This zone was 
restricted to the Tarawan F. in various egyptian sections 
(Tantawy, 1998, and Kasem et al 2017), however, this 
combined zone extends from the uppermost Dakhla F. 
across the Tarawan F. at Nukhul (Fig. 3).  

http://www.sciencedirect.com/science/article/pii/S0377839807000503#bib59
http://www.sciencedirect.com/science/article/pii/S0377839807000503#bib59
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5. δ13C, δ18O and carbonate contents 

The δ13C and δ18O isotopic variations depend on the 
water’s isotope composition and temperature (Stassen et 
al., 2009). Thus, they provide a widely used tool for 
tracking climatic changes (Shaaban, 1997). At the Zumaia 
section, the bulk δ13C data show two remarkable negative 
CIEs: the first is smaller (~0.5‰) that was correlated with 
the LDE, which is about 11 m beneath the Selandian’s 
base (Westerhold et al., 2008, and Sprong et al., 2013). 
The second δ13C excursion (~1 ‰) was recorded shortly 

above the base of Zone NP5 (Westerhold et al., 2011). At 
Nukhul, no remarkable variations or in carbonate contents 
mark the LDE or D/S boundary (Fig. 4). Moreover, no 
distinct  changes in δ13C and δ18O values were recorded 
close to the basis of Zone NP5 (sample 22) except the 
sudden decrease in δ18O values in samples number 18, 19 
and 21 into -5.0‰, -5.1‰  and -5.0‰, respectively, as well 
as abrupt drop in carbonate content in sample 19 into 
38.5% (Fig. 4). 

 

 

Fig. 4: Data of δ13C, δ18O and carbonate contents of the study interval at Nukhul, Sinai, Egypt. 

6. Remarks and Discussion  

Variations in calcareous nannofossil assemblages, 
δ18O and δ13C values as well as changes in CaCo3 
contents are helpful tools for precise delineation of the 
stages boundaries of Paleocene (Kasem et al., 2017). A 
distinct bed within the Dakhla F. often marks the Late 
Danian Event (LDE) in Egypt (Bornemann et al., 2009; 
Sprong et al., 2011, 2013, and Monechi et al., 2013). 
However, this bed was not recorded at Nukhul (Fig. 3). The 
base of LDE was placed in between the LO of C. edentulus 
to the LCtO of S. primus (Kasem et al., 2017). At Nukhul, 
C. edentulous appears for the first time in sample 20 
coincident with the LO and LCtO of S. primus (Table). The 
LDE was placed at sample 19 as indicated by sudden drop 
in carbonate content from 59.5% in sample 18 to 38.5% in 

sample 19. Moreover, δ18O values suddenly decreases 
from -3.4‰ in sample 17 to 5.0 ‰ and 5.1‰ in samples 
number 18 and 19, respectively, (Fig. 4). No remarkable 
variations in δ13C values were noted across this interval. 
An increase in the frequency of Prinsius in the LDE interval 
was noted (Monechi et al., 2013); yet, this notice was not 
documented in the study section. Calcareous nannofossil’s 
abundance and species richness have minimum values in 
sample 19 (Table and figure 5) indicating dissolution of 
calcareous fossils. 

The recognition of the base of Selandian is commonly 
problematic as a consequence of the rarity or absence of 
the bioevents adopted in biozonation for this period 
(Sprong et al., 2009). In Egypt, the D/S boundary had been 
delineated within Zone NP4 at the LO of genus 

http://www.sciencedirect.com/science/article/pii/S0031018213000485#bb0385
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Fasciculithus, at the LO of Diantholitha mariposa, within 
Subzone NTp8c; at the LOs of Fasciculithus sp. plus 
Sphenolithus primus, at the topmost of a considerable drop 
in the carbon isotope, or at NP5 Zone’s base (Faris et al., 
1999a, b; Tantawy et al., 2000; Faris et al., 2005a, b; Faris 
and Abu Shama, 2007; Faris and Salem, 2007; Youssef, 
2009; Aubry and Salem, 2013a). Moreover, a proposition it 
had been suggested to delineate the contact between the 
Danian and Selandian by the LO and diversification of the 
Diantholitha and Lithoptychius (Aubry and Salem, 2013b).  

In 2005, Clemmensen and Thomsen placed the 
Selandian’s base at its type locality in Denmark at the 
NP4/NP5 zonal boundary that coincides the change in 
lithology from the Danian limestones to the Selandian 
Green sand. At the GSSP Zumaia section, this boundary 
was marked by the ending of flourish of Braarudosphaera 
bigelowii near the top of Zone NP4 (Schmitz et al., 2011). It 
occurs above or almost at a level coincides with the second 
radiative episode of fasciculiths and the variation from the 
Aitzgorri Limestone F. to the marly Itzurun F. (Schmittz et 
al., 1998; Bernaola et al., 2007, 2009, and Schmitz et al., 
2011). However, the End Acme of Braarudosphaera 
bigelowii is restrictive to the north Atlantic, the North Sea 
Basin and Zumaia, and cannot be applied to the Tethyan 
areas (Schmitz et al., 2011). In this study, B. bigelowii is 
sporadic, however, it occurs with common abundance in 
sample 17 (Table).  

Furthermore, the 2nd radiation of genus fasciculiths was 
delineated by the LO of Lithoptychius ulii (Schmitz et al., 

2011). Because L. ulii first occurs slightly beneath the D/S 
boundary and F. tympaniformis occurs above it at Zumaia 
(Schmitz et al., 2011), the D/S boundary can be 
approximated within the interval between these two 
bioevents at the Tethyan area (Kasem et al., 2017). At 
Nukhul, the LOs of L. ulii and F. tympaniformis are 
synchronized and, therefore, the D/S boundary was placed 
at the base of calcareous nannofossil Zone NP5 (sample 
22). No lithological variation was noted across this 
boundary (Fig. 3). Moreover, no remarkable changes in 
δ13C and δ18O data were recorded close to NP4/NP5 zonal 
boundary except the increase in δ13C values in samples 23 
and 24 slightly above this boundary and the sudden drop in 
δ18O values just below this boundary in sample 21 (Fig. 3). 
Furthermore, the calcium carbonate contents show a 
remarkable decrease from 69.0% in sample 21 to 51.0 % in 
sample 22 (Fig. 4). The absence of representatives of the 
first radiation of fasciculiths (Diantholitha sp., Lithoptychius 
varolii, and L. chowii), co-occurrence of the LOs of S. 
primus and C. edentulous, coincidence of the LOs of L. ulii 
and Fasciculithus tympaniformis, L. janii, L. stegastus, F. 
clinatus and Bomolithus elegans (Table) indicates a hiatus 
within the Danian interval at Nukhul.  

The abundance of calcareous nannofossil decreases in 
sample 21 and 22 into 1 and 2.7 specimen per field of view 
(S/FOV), respectively; whereas diversity decreases into 13 
species in sample 21 (Table and figure 5). These variations 
reflect dissolution of carbonates during this interval. 

 

 

Fig. 5: Calcareous nannofossil abundance, diversity, and counts of warm-water taxa relative to cool-water taxa. 
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Thanetian Stage’s base at Zumaia was delineated at 
the start of magnetochron C26n without any characteristic 
variation in lithology, assemblages of planktonic 
foraminifera, or in the δ13C values across the S/T transition 
(Schmitz et al., 2011).  

The most important event for approximating the S/T 
boundary is the MPBE that is a global short-lived biotic 
event and possibly related to warming episode (Schmitz et 
al., 2011). It occurs at about 2.8 m beneath the base of the 
Thanetian and about 4.5 m overhead of the onset of Zone 
NP6 (Schmitz et al., 2011). The MPBE at Zumaia is 
delineated by a remarkable falling in the content of 
carbonate and δ13C (Bernaola et al., 2007).  

The S/T boundary was delineated in Egypt at the start 
of Zone NP7/8 (Faris and Farouk, 2012) at the contact 
between the Dakhla F. and the Tarawan F. and, therefore, 
a hiatus was suggested at this boundary as it is evident by 
the change in lithology from Dakhla Shale to the limestones 
of the Tarawan F. (e. g. Kasem et al 2017). Discrepancies 
in calcareous nannofossils age dating of the start of 
Tarawan F. were attributed to variations in relative water 
depths during deposition at various localities (Aubry and 
Salem 2013b). These variations are likely attributed to 
tectonics that resulted in uplift and subsidence in various 
areas, and therefore, affect water depth (Paleobathymetry) 
and the diversity of nannofossils. 

The S/T boundary at Nukhul was approximated at the 
start of Zone NP7/8 within the upper part of Dakhla F. 
without any significant lithological change (Fig. 3). At 
Nukhul, no considerable variations in the calcareous 
nannofossils were recorded through this interval excepting 
the LO of D. mohleri (Table) and the Dakhla F. is 
conformably overlain by the Tarawan F., where calcareous 
nannofossil Zone NP7/8 extends throughout these 
formations (Fig. 3).  

No characteristic variations in δ13C and δ18O values 
were noted within Zone NP6 or close to the NP7/8 Zone’s 
base except the sudden drop in sample 32 below it and 
sample 40 above it (figure 4). The δ13C values drops from 
2.2 ‰ in sample 30 to 1.8‰ in sample 32 and drops from 
2.3 ‰ in sample 38 to 2.0 in sample 40 (figure 3). Similarly, 
The δ18O values drops from -2.8 ‰ in sample 30 to -3.8 ‰ 
in sample 32 and drops from -2.4 ‰ in sample 36 to -4.2 in 
sample 40 (figure 3). 

The diversity decreases into 13 species in sample 36 
and drops into 9 species in sample 41 (Table and figure 5). 
Similarly, the abundance decreases into 4.2 S/FOV in 
sample 36 and drops into 3.2 S/FOV in sample 42 (Table 
and Fig. 4). 

Previous studies recognized the ecological preferences 
of certain taxa (see Kasem et al., 2022 for references). 
Based on these studies, the warm-water taxa recognized in 
the present study include: Thoracosphaera operculata, T. 
saxea, Coccolithus pelagicus, Ericsonia subpertusa, 
Zygrhablithus bijugatus, Fasciculithus spp., Sphenolithus 
spp., Rhomboaster spp., Tribrachiatus spp., Pontosphaera 
spp.; Discoaster spp., Heliolithus kleinpellii, and Bomolithus 
spp.; whereas, the cool-water taxa include Zeugrhabdotus 

sigmoides, Markalius inversus, Cruciplacolithus spp., 
Prinsius spp., Chiasmolithus spp., Neochiastozygus 
junctus, Blackites spp., Neococolithus protens, Toweius 
eminens, and T. tovae (figure 5). The abundance of warm-
water forms comparable to the cold-water taxa shows 
upward increase in water temperature and oligotrophic 
conditions during the Paleocene interval (Fig. 5). 

Several evidences support tectonic disturbance in the 
study area. These supports include: 1) the presence of 
hiatuses and the absence of some calcareous nannofossil 
zones within the Danian stage; 2) the noticed variations of 
δ13C and δ18O, and carbonate contents as well as 
calcareous nannofossil diversity at the boundaries. 3) the 
partial absence of distinctive beds within the Dakhla 
Formation that mark the Late Danian Event at this locality; 
and (4) The abrupt transition from siliciclastics (Dakhla Fm) 
to dominant carbonates (Tarawan Fm) (Prof. ? personal 
communication). 

7. Summary and conclusion 

Variations in calcareous nannoplankton assemblages, 
δ13C as well as δ18O values plus carbonate contents were 
tracked at the Nukhul section, Sinai, Egypt. The study 
interval that outcrops at Nukhul covers the Dakhla - 
Tarawan formations. Five calcareous nannofossil zones 
were recognized that are NP2/3, NP4, NP5, NP6, and 
NP7/8. The LDE was placed based on sudden decrease in 
carbonate contents and δ18O values, however, no distinct 
changes in δ13C values were recorded throughout this 
interval. The diversity and abundance of calcareous 
nannofossils reach their minimum values at this level as a 
result of dissolution carbonates. The Selandian’s base was 
tentatively delineated at NP5 Zone’s base without any 
lithological change across this boundary. No distinct 
changes in δ13C and δ18O values were documented close 
to this level except the abrupt decrease in δ18O values just 
below this boundary and increase in δ13C values slightly 
above it. The calcium carbonate contents show a distinct 
drop close to this level. The diversity and abundance of 
calcareous nannofossil show remarkable decreases 
around the NP4/NP5 zonal boundary reflecting a 
dissolution episode of carbonates. The absence of 
Diantholitha sp., early representatives of Lithoptychius, 
coincidence of the LOs of S. primus and C. edentulous, 
and the LOs of L. ulii and Fasciculithus tympaniformis, L. 
janii, L. stegastus, F. clinatus and Bomolithus elegans 
indicate a hiatus within the Danian interval at the Nukhul 
section. Thanetian’s base was delineated at the top of 
Zone NP6 within the upper part of Dakhla F. without any 
significant change in lithology or in the nannofossil 
assemblages except the LO of D. mohleri. Calcareous 
nannofossil Zone NP7/8 extends from the Dakhla F. to the 
Tarawan F. indicating conformable relationship between 
them at Nukhul. No remarkable change in δ13C and δ18O 
values were recorded at or around the base of Zone NP7/8 
except the abrupt decreases in sample 32 below and 
sample 40 above this boundary. Fluctuations in diversity 
and abundances were documented close to NP7/8 Zone’s 
base at the study section. Ecological preferences of 
calcareous nannofossil assemblages in study section 
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reveal an upward increase in paleotemperature of water 
throughout the Paleocene. The Paleocene sediments 
exposed at Nukhul area is a good section for tracking the 
variations in calcareous nannofossils and sedimentary with 
changes in the paleoclimate. 
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